
13TH
ALBERTO MENDELZON

INTERNATIONAL WORKSHOP

ON FOUNDATIONS OF DATA

MANAGEMENT

Asunción, Paraguay June 03 - 07, 2019

Proceedings of the 13th Alberto Mendelzon

International Workshop on Foundations of Data

Management

Asunción, Paraguay

June 2019

ISSN 1613-0073

Diagramming: Ing. Julia Talavera

This publication has been prepared with the support of CONACYT. The content of this proceeding is the
exclusive responsibility of the authors and in no case should be considered as the opinion of CONACYT.

La presente publicación ha sido elaborada con el apoyo del CONACYT. El contenido de la misma es
responsabilidad exclusiva de los autores y en ningún caso se debe considerar que refleja la opinión del
CONACYT.

This event is co-financed by Consejo Nacional de Ciencia y Tecnoloǵıa - CONACYT with FEEI resources.

Este evento es cofinanciado por el Consejo Nacional de Ciencia y Tecnoloǵıa - CONACYT con recursos del
FEEI.

Copyright c© 2019 for the individual papers by the papers’ authors. Copying permitted for private and
academic purposes. This volume is published and copyrighted by its editors.

Table of Contents

I Preface 5

II Keynotes 9

From Complete to Incomplete Data and Back in Ontology - Enriched Databases 11

Enabling Search by Experience . 12

Schemas for Graphs and Other Forms of Semi-Structured Data . 13

Query Optimization by Quantifier Elimination . 14

III Regular Papers 15

From Complete to Incomplete Data and Back in Ontology - Enriched Databases 17

Enabling Search by Experience . 28

Schemas for Graphs and Other Forms of Semi-Structured Data . 38

IV Short Papers 49

Semantic Width Revisited (Extended Abstract) . 51

HyperBench: A Benchmark and Tool for Hypergraphs and Empirical Findings 56

Parallel Computation of Generalized Hypertree Decompositions . 61

An Empirical Analysis of GraphQL API Schemas in Open Code Repositories and Package Registries . 66

Querying APIs With SPARQL . 71

On Directly Mapping Relational Databases to Property Graphs . 75

Linear Recursion in G-CORE . 79

Towards Reconciling Certain Answers and SPARQL: Bag Semantics to the Rescue? 84

Anomaly Detection in Public Procurements using the Open Contracting Data Standard 89

Map-Elites Algorithm for Features Selection Problem . 94

Bring Order to Data . 99

A Non-Uniform Tuning Method for SQL-on-Hadoop Systems . 104

Datalog-based Reasoning for Knowledge Graphs . 113

Dynamic Pipelining of Multidimensional Range Queries . 118

Part I

Preface

5

The Alberto Mendelzon Workshop is an international scientific venue started in 2006 to honor the memory
of Alberto Mendelzon, who made a significant contribution to the field of data management. It has been an
established forum for top-quality research on the foundations of data management. While focused especially on
Latin American students and scholars, the workshop is open to submissions from around the world, and it has
so far gathered some of the world’s best researchers in the field.

This volume contains papers accepted for the 13th edition of the AMW, held in Asuncion, Paraguay,
from June 3 to 7, 2019. As in previous editions, the call for papers of this edition solicited two types of
submissions: regular and short papers, where the latter was intended to present ongoing research, results
published elsewhere, and applications. The workshop received 28 submissions from around the globe. The
vast majority of these submissions were of high quality and reported on intriguing on-going or latest research
development on diverse data management topics. Following a rigorous reviewing effort, whereby each submission
has been allocated at least three reviewers, the program committee accepted 23 papers to form an excellent
workshop program with five sessions: Foundations of Data Management, The Web, Graph Data, Data Mining
and Algorithms and Optimisation.

Each accepted paper has a presentation slot at the workshop and may appear in the workshop pro-
ceedings. The paper presentations were accompanied by four keynote sessions, featuring Magdalena Ortiz (TU
Wien, Austria) on ”From Complete to Incomplete Data and Back in Ontology-Enriched Databases”, Wang-
Chiew Tan (Megagon Labs, USA) on ”Enabling Search by Experience”, Juan Reutter (Pontificia Universidad
Catolica de Chile, Chile) on ”Schemas for Graphs and other forms of Semi-Structured Data”, and Christoph
Koch (EPFL, Switzerland) on ”Query Optimisation by Quantifier Elimination”.

As in previous editions, AMW 2019 hosted the Alberto Mendelzon Workshop School (AMWS), which
consists of four three-hour tutorials given by invited international speakers. The school was held before AMW,
on June 5 - 7, 2019. This year’s tutorials were on: Deep Learning for Natural Language Processing by Felipe
Bravo-Marquez (University of Chile, Chile); Data preparation and data integration: BigGorilla to the rescue by
Wang-Chiew Tan (Megagon Labs, USA); Building AI Applications using Knowledge Graphs by André Freitas
(University of Manchester, UK); and Languages for Data and Knowledge by Magdalena Ortiz (TU Wien,
Austria).

We would like to warmly thank: the authors of the submitted papers; the presenters at the work-
shop; the keynote speakers; Adriana Marotta (Universidad de la Republica, Uruguay), the General Chair of
AMW 2019; the fantastic and professional Program Committee; the AMW School Committee; the AMW Steer-
ing Committee; and the local supporting institutions especially to Consejo Nacional de Ciencia y Tecnoloǵıa
(abbreviated CONACYT) . Without their effort, AMW 2019 would not have been successful.

This event is co-financed by Consejo Nacional de Ciencia y Tecnoloǵıa - CONACYT with FEEI re-
sources.

Este evento es cofinanciado por el Consejo Nacional de Ciencia y Tecnoloǵıa - CONACYT con recursos
del FEEI.

7

Part II

Keynotes

9

From Complete to Incomplete Data and Back in
Ontology-Enriched Databases

Magdalena Ortiz

Institute of Information Systems, TU Wien, Austria

Abstract. Enriching a database with a background theory expressing
domain knowledge, usually called an ontology, has been proposed as a
tool to overcome the incompleteness of data. In ontology mediated query-
ing the theory is used to infer answers that may involve implied facts not
present in the data. This and other related reasoning problems have been
extensively studied over the last decade, mostly for ontologies written in
description logics and in dialects of Datalog±. But the usual first-order
semantics used in this setting, which assumes that all data is incomplete,
can sometimes be too weak and not give all expected answers. I will
discuss some alternatives that have been explored for combining com-
plete and incomplete data in the presence of description logic ontologies,
and the challenges that they pose, including increased computational
complexity of reasoning and non-monotonicity of the ontology mediated
query languages they induce. I will discuss a few interesting reasoning
problems that arise in these setting, and some translations from these
query languages into variants of Datalog.

11

Enabling Search by Experience

Wang-Chiew Tan

Megagon Labs

Abstract. Today’s online shopping systems enable consumers to sift
through a vast amount of information by manipulating combinations of
predefined filters. These filters, such as travel dates, price range, and loca-
tion, are objective attributes that lead to an indisputable set of answers.
However, we show that users’ search criteria are often subjective and
experientially expressed. Hence, to provide consumers with an enhanced
search experience, online shopping systems should directly support both
subjective and objective search. I will describe how this is done in an
experiential search engine that we are currently developing at Megagon
Labs; by harnessing information “outside the box”, in the text of online
reviews or social media, views, and interpreting subjective queries.

12

Schemas for Graphs and Other Forms of
Semi-Structured Data

Juan L. Reutter

IMFD; Pontificia Universidad Católica de Chile

Abstract. Semistructured data is on the rise: Graph databases are now
offered by most major database vendors, and JSON is used everywhere
on the web. And while these data paradigms are commonly described
as “having less structure than relational databases”, the industry is
also recognising the advantages of pairing the data with some notion
of schema, in the form of metadata that would describe both what is
in the database and how is the data structured. In this talk we focus
on the SHACL/ShEx proposal for RDF graph data and JSON Schema
for JSON data, two of the most adopted proposals for semi-structured
data. Interestingly, even though these proposals have spanned in two
completely different worlds, we show that they share the same founda-
tions and the same spirit. We will also discuss about the challenges that
arise from features demanded in these proposals by the community, but
that give rise to a number of interesting open problems.

13

Query Optimization by Quantifier Elimination

Christoph Koch

École Polytechnique Fédérale de Lausanne

Abstract. Many of us who teach database query languages have seen
creative students who lack a training in formal logic come up with sur-
prising ways of using aggregation for expressing challenging queries in
SQL – ways that do not feel natural to those trained in logic but which
nevertheless exact admiration. In this talk, I show how quantifier elimina-
tion can be used to optimize SQL queries in surprising ways – ways whose
results coincide with and generalize these apparently creative tricks. The
new query optimization technique, apart from being potentially useful for
practical query engines, suggests a particular way in which the logically
untrained mind synthesizes queries (not quantifier elimination, though)
– an observation at best based on an amateur’s understanding of brain
science, but potentially still useful for teaching databases.

14

Part III

Regular Papers

15

RDF and Property Graphs Interoperability:
Status and Issues

Renzo Angles1,2, Harsh Thakkar3, Dominik Tomaszuk4

1 Universidad de Talca, Chile
2 Millennium Institute for Foundational Research on Data, Chile

3 University of Bonn, Germany
4 University of Bialystok, Poland

rangles@utalca.cl1, thakkar@cs.uni-bonn.de3, d.tomaszuk@uwb.edu.pl4

Abstract. RDF and Property Graph databases are two approaches for
data management that are based on modeling, storing and querying
graph-like data. In this paper, we present a short study about the inter-
operability between these approaches. We review the current solutions
to the problem, identify their features, and discuss the inherent issues.

1 Introduction

RDF [24] and graph databases [37] are two approaches for data management that
are based on modeling, storing and querying graph-like data. Several database
systems based on these models are gaining relevance in the industry due to their
use in several domains where graphs and network analytics are required [6].

Both, RDF and graph database systems are tightly connected as they are
based on graph-oriented database models. On the one hand, RDF database sys-
tems (or triplestores) are based on the RDF data model [24], their standard query
language is SPARQL [19], and there are languages to describe structure, restric-
tions and semantics on RDF data (e.g. RDF Schema [13], OWL [18], SHACL [25],
and ShEx [11]). On the other hand, most graph database systems are based on
the Property Graph (PG) data model [7], there is no standard query language
(although there are several proposals [4]), and the notions of graph schema and
integrity constraints are limited [32]. Therefore, these two groups of systems
(in particular the latter) are dissimilar in data model, schema, query language,
meaning and content.

Given the heterogeneity between RDF and graph database systems, it results
necessary to study the interoperability among them, i.e. the ability of these
systems to exchange data, information (structure and semantics) and knowledge
(constraints and business rules).

The main objective of this paper is to present an overview of the research
concerning the interoperability between RDF and property graph databases.
First, we clarify the notion of database interoperability, identifying three types:
syntactic interoperability, semantic interoperability, and query interoperability
(Section 2). Second, we present a short review of the current approaches and

17

works, including data format transformations, data and/or schema exchange,
and query translations. (Section 3). Third, we isolate and discuss the main issues
and challenges in the topic (Section 4).

2 Database Interoperability

The term “Interoperability” was introduced in the area of information systems,
and it could be defined as the the ability of two or more systems or components to
exchange information, and to use the information that has been exchanged [3]. In
the context of data management, interoperability is concerned with the support
of applications which exchange and share information across the boundaries of
existing databases [38].

Providing interoperability between database models, systems and applica-
tions is a very concrete and pragmatic problem, which stems from the need of
reusing existing systems and programs for building new applications [38]. Data
and information interoperability is relevant for several reasons, including:
– Promotes data exchange and data integration [30];
– Allows to have a common understanding of the meanings of the data [22];
– Allows the creation of information and knowledge, and their subsequent reuse

and sharing [40];
– Facilitates the access to a large number of independently created and man-

aged information sources of broad variety [40];
– Facilitates the reuse of available systems and tools [38];
– Allows to explore the best features of different approaches and systems [31];
– Enables a fair comparison of database systems by using benchmarks [5];
– Supports the success of emergent systems and technologies [38];
– It is a crucial factor for the development of new information systems [29].

One can define several forms of interoperability in information systems [28].
For instance, focusing in the dimension of heterogeneity, Sheth [40] defined four
levels of interoperability: system, syntax, structure and semantic. The system
level concerns the heterogeneity of computer systems and communications. The
syntax level considers machine-readable aspects of data representation (i.e. data
formats and serializations). The structure level involves data modeling constructs
and schematic heterogeneity. The semantic level requires that the information
system understand the semantics of the use’s information request and those of
information sources.

In the context of Web Languages and Ontologies, the syntactic interoper-
ability means that the applications can take advantage of parsers and APIs
providing syntactical manipulation facilities. Additionally, semantic interoper-
ability implies that applications can understand the meaning of representations
and thus can setup automatically mappings between different representations by
content analysis [33].

In the context of databases, interoperability can be divided into syntactic,
semantic and query interoperability. Syntactic interoperability refers to the abil-
ity of a database system to use data from other database system [23]. It could

18

means that both database systems are able to exchange information, although
they may not being aware of the meaning of such information. Semantic inter-
operability can be defined as the ability of database systems to exchange data
in a meaningful way. It implies that the systems have a common understanding
of the meanings of the data [22]. Query interoperability implies the existence
of methods to transform different query languages or data accessing methods
between two systems. It means that a query in the source database system can
be translated into one that can be directly executed on the target system [48].

3 RDF and Property Graphs interoperability

In general terms, syntactic interoperability between RDF and PG databases
means data exchange at the level of serialization formats, semantic interoper-
ability implies the definition of data and schema mappings, and query interop-
erability implies query translations among SPARQL and property graph query
languages. This section presents a review of the approaches and methods pro-
posed for these types of interoperability.

3.1 RDF databases

Every RDF database system is designed to support the Resource Description
Framework [24], a W3C standard created to describe web resources, although
it could be used in any application domain. RDF defines a data model which is
based on the notion of RDF triple. An RDF triple is a tuple formed by a subject,
a predicate, and an object. The subject denotes a resource, the predicate refers
to an attribute or relationship of the subject, and the object defines the value for
such property. A collection of RDF triples could be visualized a graph where the
subjects and objects are represented as nodes, and the predicates are represented
as edges. An RDF database could be considered as a collection of RDF graphs.
RDF reification is a feature which means to create triples about triples, here
metadata (e.g. temporal, uncertainty and trust metrics).

The RDF Schema vocabulary [13] provides a simple way to describe the
structure of an RDF database. In this case, the schema is described as a collec-
tion of a resource classes and property classes. Moreover, the classes could be
hierarchically organized by using subclass and subproperty relationships. More
complex restrictions can be expressed in languages like OWL [18], SHACL [25]
and ShEx [34]. These languages provide semantic interpretations that allow to
infer additional triples. This feature is called RDF(S) entailment.

SPARQL is the standard query language to retrieve and manipulate RDF
data. The first version (SPARQL 1.0 [35]) provides basic operators to express
graph pattern matching. The second version (SPARQL 1.1 [19]) adds features
like explicit negation, path expressions, subqueries and aggregate operators.

19

3.2 Property graph databases

Most of the current graph database systems have been designed to support the
property graph data model. A property graph [7] is a directed labelled multi-
graph with the special characteristic that each node or edge could maintain a
set (possibly empty) of properties. A property is formed by a name and a value.

The notion of schema for a property graph database has not been developed
in practice, although some systems use the notions of node types and edge types.
Integrity constraints are also in development. In [32], the authors mention three
types of integrity constraints: inherent constraints, explicit constraint and im-
plicit constraint. Additionally, we found node/edge/property constraints, path
constraints, and graph pattern constraints with property values [12].

In spite of the extensive research on querying graph databases [4], there is no
standard query language for property graphs. A recent publication, called the
GQL manifest [2], proposes to define and standardize one property graph query
language by fuzing the best of three query languages: Cypher [1], PGQL [36]
and G-CORE [8].

3.3 RDF-PG Syntactic interoperability

Assume that the syntactic interoperability is given by the facilities to trans-
form data from one format to another. Hence, the main requirement to support
syntactic interoperability is the existence of data formats (i.e. a syntax for en-
coding data stored in a database), over which transformation methods can be
implemented.

Turtle, TriG, RDF/XML, RDF/JSON and JSON-LD are data formats for en-
coding RDF data. In contrast, there is no data format to encode property graphs.
Given this restriction, some systems use graph data formats (like GraphML,
DotML, GEXF, GraphSON), but none of them is able to cover all the features
presented by the property graph data model. YARS-PG [47] is a recent pro-
posal of data format which was designed to be simple, extensible and platform
independent, and to support all the features provided by the current database
systems based on the property graph data model.

Given a source data format S and a target data format T , the first option to
support syntactic interoperability is to define a textual mapping from S to T .
Note that the schema of the database is not considered in the transformation.
Hence, the structure, semantics and restrictions of the source data could not be
preserved by the translated data.

Hartig [20] proposes two transformations between RDF? and property graphs.
RDF? is a syntactic extension of RDF which is based on reification. The first
transformation maps any RDF triple as an edge in the resulting property graph.
Each node has the “kind” attribute to describe the type of a node (e.g. IRI).
The second transformation distinguishes data and object properties. The former
are transformed into node properties, and latter into edges of a property graph.
The limitation of the second transformations is that metadata triples cannot be
transformed. The shortcoming of this approach is that RDF? isn’t supported by

20

majority of RDF triplestores (except Blazegraph and the most recent addition,
AnzoGraph) and requires conversion of existing RDF data beforehand.

Schätzle et al. [39] propose a mapping which is native to GraphX (a parallel
processing system implemented on Apache Spark). The proposed graph model
is an extension of the regular graph, but lacking the concept of attributes. The
mapping uses an special attribute label to store the node and edge identifiers, i.e.
each triple t = (s, p, o) is represented using two vertices vs, v0, an edge (vs, vo)
and properties vs.label = s, vo.label = o, (vs, vo).label = p. The proposed method
does not address blank nodes or RDF entailment.

Nyugen et al. [27] proposed LDM-3N (labeled directed multigraph-three
nodes), a graph model for RDF data. It is an extension of the regular graph,
without the concept of attributes, and represents each triple element as separate
nodes, thus three nodes (3N) . The LDM-3N graph model is used to address the
Singleton Property (SP) based reified RDF data.

Tomaszuk [46] presented an approach that uses the YARS serialization for
transforming RDF data into property graphs. This approach basically performs
a transformation between encoding schemes and does not consider the RDF
schema and its entailments. This approach has several implementations, eg.
neo4j-yars5 and TTL2YARS6.

With respect to the methods to transform property graphs into RDF graphs,
the literature is very restricted. The current methods [16,20] are based on reifi-
cation. In the simplest case, for each edge in the property graph there will be
a blank node (in the RDF graph) containing at least three nodes (resources or
literals) and three edges (properties). Such elements will be necessary to describe
all the information of the original edge.

A additional approach to provide syntactic interoperability is the use of an
intermediate data format. It is possible to find some tools to transform RDF into
other formats and vice versa, eg. Triplify [9] for relational data, GRDDL [14] for
XML and CSVW [42] for tabular data. However, to the best of our knowledge,
there is not study about the subsequent transformation to property graphs.

3.4 RDF-PG Semantic interoperability

Semantic interoperability between databases means that both, source and target
systems, are able to understand the meaning of the data to be exchanged. It
implies that both, data and schema must participate of the transformations
method.

A common approach to support semantic interoperability is the definition of
data and schema transformation methods. The schema transformation method
takes as input the schema of the source database, and generates a schema for
the target database. Similarly, the data transformation method allows to move
the data from the source database to the target database, but taking care of the
target schema. The transformation methods can be implemented by using data

5 https://github.com/lszeremeta/neo4j-sparql-extension-yars
6 https://github.com/lszeremeta/ttl-to-yars

21

formats or data definition languages. To the best of our knowledge, there is no
method that support data and schema transformations between RDF and PGs.

A additional approach is the use of a data transformation language. For
instance, XSPARQL [10], and SPARQL Template Transformation Language
(STTL) [15] are languages that allow data transformation between RDF and
other languages or formats. In the opposite direction, RML [17] is a generic
language which allows to define mappings from heterogeneous sources to RDF.
In a recent article [26], the authors present the Graph to Graph Mapping Lan-
guage (G2GML) for mapping RDF graphs to property graphs. This language
can be processed by an implementation called G2G Mapper (available on https:

//github.com/g2gml). There is no formal definition nor analysis of the features
of this transformation language.

3.5 RDF-PG Query interoperability

Query interoperability between RDF and property graph databases is a current
issue due to the lack of a standard query language for property graphs. Grem-
linator [44,45] is a tool that translates SPARQL queries into Gremlin pattern
matching traversals. Gremlin is a popular language used by some graph database
systems and graph processing frameworks. Gremlinator [44] has been successfully
integrated as a plugin of the famous Apache TinkerPop graph computing frame-
work7. Given the above, the openCypher initiative is working on the Cypher to
Gremlin translation (https://github.com/opencypher/cypher-for-gremlin).

Hartig et al. [21] defined extensions of the SPARQL query language that
capture an alternative approach to represent statement-level metadata that can
be used in property graphs (see [20]). This proposal, called SPARQL? is an
RDF?-aware extension that introduces new features that enable users to directly
access metadata triples in queries.

4 Issues and challenges

Based on our literature review about RDF and property graphs interoperability,
we identified several issues and challenges which will be discussed in this section.

4.1 Syntactic interoperability

– There is no standard data format for encoding property graphs. This is a
crucial issue to support syntactic interoperability.

– The most RDF serializations are triple-centric, while the most PG serializa-
tions represent graph as lists of nodes and edges.

– Despite the serializations based on JSON or XML in both models, the syn-
taxes used are difficult to map.

7 The sparql-gremlin plugin of the Apache TinkerPop framework available on Github
– (https://github.com/apache/tinkerpop/tree/master/sparql-gremlin)

22

– The support for multi-values is different in the models. A property graph
just support arrays, while RDF provides different types of lists.

– The RDF data model allows metadata about properties, i.e. edges between
edges are allowed. Although this feature is not common in real data, a data
mapping should be able to manage it. Note that a property graph does not
support multi-level metadata.

– RDF reification leads to an explosion in the size of the resulting graph. This
can be avoided by implementing a “smart” transformation that is able to
recognize a set of triples describing a reification, and map them to a single
node in the property graph.

4.2 Semantic interoperability

– The RDF model presents features with special meaning (or semantics) that
cannot be modeled by the property graph data model (at least not in a easy
way). Blank nodes, reification, and entailment are some of these features.

– Usually, an RDF database contains a mix of data and schema. In such case,
it is necessary to decide whether to extract the schema (and transforming it
independently), or processing the schema as part of the data.

– Another intrinsic feature of an RDF database is the occurrence of a partial
schema. In such case, we must define whether the schema will be used or not.
In the first case, it could be necessary to “discover” the schema, and just
then transform the data. Hence, such an approach could imply the use of a
transformation method that is schema independent, or a combined method
that supports data with or without schema.

– A semantic issue is the right and complete interpretation of a reified triple,
and its representation in a property graph.

– RDF Schema supports the definition of subclass and subproperty. These
features are not supported by current property graph database systems.

– OWL, that is intended to be a layer above RDF Schema, supports more
complex constraints for classes (e.g. intersection) and properties (e.g. tran-
sitivity). These features are not supported by the property graph model.

– An RDF database could contain semantic information that allows data in-
ference (i.e. to infer new triples based on the existing triples). Current graph
database systems have been not designed to support inference.

– Discovering semantic information and resolving mismatches requires the ap-
plication of human intelligence and judgment. Hence, the semantic interop-
erability is determined by the power of the translation methods to support
data and semantics interpretation.

4.3 Query interoperability

– Unlike the standardisation (via the W3C standards and ISO committees) of
query languages for the relational databases (SQL) and the RDF databases
(SPARQL), property graph databases do not have a standard query lan-
guage. This has led to the development of a wide range of vendor-specific

23

graph query languages (e.g. Cypher for Neo4j and Gremlin for Apache Tin-
kerPop).

– Most of the current property graph query languages do not have a solid
formal foundation (semantics, complexity and expressiveness). This raises a
critical challenge for supporting query interoperability, since a formal map-
ping between SPARQL and a property graph language cannot be defined.

– The notion of schema in the context of property graph query languages is not
strictly defined, or even absent in some cases due to their NoSQL oriented
nature. This creates another challenge when aiming to transform RDF data
(which consists of schema information) to property graph data.

– Property graph query languages address two different paradigms: declara-
tive and imperative. For instance, Cypher is a declarative query language,
whereas Gremlin is an imperative graph traversal language that also offers
a declarative construct. This adds an additional challenge, since these two
different paradigms operate on disparate sets of semantics (i.e. set vs bag
semantics), while aiming to support query interoperability.

– There are some on-going efforts, such as [41,43], that advocate consolidating
the relational and graph algebras in order to lay a foundation for proving the
equivalences between the different transformations and mappings to support
query interoperability between RDF and Property graphs. Nonetheless, there
is still scope for improvement.

Therefore, there is a need to propose a standardized query language for prop-
erty graph databases. It will facilitate the formal definition and study of query
transformation methods.

5 Conclusions

Interoperability is a very important feature that should be supported by any
database systems. In this article we concentrate on the interoperability between
RDF databases and property graph databases. Our analysis of the available
approaches and methods does not cover all the issues and challenges, but shows
that there are several problems to deal with.

The interoperability among systems is based on agreements between re-
questers and providers [22]. Hence, the research on the area must be supported
by the development of successful standards (starting with the standardization
of the property graph data model and its query language).

Acknowledgments. Renzo Angles was (partially) funded by the Millennium In-
stitute for Foundational Research on Data (IMFD). Harsh Thakkar was funded
by the EU H2020 R&I project BOOST4.0 (GA 780732). Dominik Tomaszuk was
supported by the National Science Center, Poland (NCN) under research grant
Miniatura 2.

24

References

1. Cypher query language reference, version 9.
https://s3.amazonaws.com/artifacts.opencypher.org/openCypher9.pdf

2. The GQL Manifesto. https://gql.today/
3. IEEE Standard Computer Dictionary: A Compilation of IEEE Standard Computer

Glossaries. IEEE Std 610 (Jan 1991)
4. Angles, R., Arenas, M., Barceló, P., et al.: Foundations of modern query languages

for graph databases. ACM Computing Surveys (CSUR) 50(5) (Sept 2017)
5. Angles, R., Boncz, P., Larriba-Pey, J., Fundulaki, I., Neumann, T., Erling, O.,

Neubauer, P., Martinez-Bazan, N., Kotsev, V., Toma, I.: The Linked Data Bench-
mark Council: a Graph and RDF industry benchmarking effort. Sigmod Record
43(1) (March 2014)

6. Angles, R., Gutierrez, C.: An introduction to graph data management. In: Graph
Data Management, chap. 1. Data-Centric Systems and Applications, Springer Na-
ture (2018)

7. Angles, R.: The property graph database model. In: Proc. Alberto Mendelzon
International Workshop on Foundations of Data Management (AMW) (2018)

8. Angles, R., Arenas, M., Barceló, P., Boncz, P., Fletcher, G., Gutierrez, C., Lin-
daaker, T., Paradies, M., Plantikow, S., Sequeda, J., van Rest, O., Voigt, H.: G-
CORE: A core for future graph query languages. In: Proc. of the International
Conference on Management of Data (SIGMOD) (2018)

9. Auer, S., Dietzold, S., Lehmann, J., Hellmann, S., Aumueller, D.: Triplify: Light-
weight Linked Data Publication from Relational Databases. In: Proc. of the 18th
International Conference on World Wide Web. pp. 621–630. ACM, New York, NY,
USA (2009)

10. Bischof, S., Decker, S., Krennwallner, T., Lopes, N., Polleres, A.: Mapping between
RDF and XML with XSPARQL. Journal of Data Semantics 1(3) (2012)

11. Boneva, I., Gayo, J.E.L., Hym, S., Prud’hommeau, E.G., Solbrig, H.R., Staworko,
S.: Validating RDF with shape expressions. CoRR, abs/1404.1270 (2014)

12. Bonifati, A., Fletcher, G., Voigt, H., Yakovets, N.: Querying Graphs. Synthesis
Lectures on Data Management, Morgan & Claypool Publishers (2018)

13. Brickley, D., Guha, R.V.: RDF Schema 1.1, W3C Recommendation (2014)
14. Connolly, D.: Gleaning Resource Descriptions from Dialects of Languages

(GRDDL) - W3C Recommendation. https://www.w3.org/TR/grddl/ (September
11 2007)

15. Corby, O., Faron-Zucker, C.: Sttl: A sparql-based transformation language for rdf.
In: Proc. of the 11th International Conference on Web Information Systems and
Technologies (WEBIST) (2015)

16. Das, S., Srinivasan, J., et al.: A tale of two graphs: Property graphs as RDF in or-
acle. In: Proc. of the International Conference on Extending Database Technology
(EDBT). pp. 762–773 (2014)

17. Dimou, A., Sande, M.V., Colpaert, P., Verborgh, R., Mannens, E., de Walle, R.V.:
RML: A generic language for integrated rdf mappings of heterogeneous data. In:
Proc. of the Linked Data on the Web Workshop (2014)

18. Group, W.O.W.: OWL 2 Web Ontology Language, Document Overview - W3C
Recommendation. https://www.w3.org/TR/owl2-overview/ (December 11 2012)

19. Harris, S., Seaborne, A.: SPARQL 1.1 Query Language - W3C Recommendation.
https://www.w3.org/TR/sparql11-query/ (March 21 2013)

20. Hartig, O.: Reconciliation of RDF* and property graphs. arXiv:1409.3288 (2014)

25

21. Hartig, O., Thompson, B.: Foundations of an alternative approach to reification in
rdf. arXiv preprint arXiv:1406.3399 (2014)

22. Heiler, S.: Semantic interoperability. ACM Comput. Surv. 27(2), 271–273 (1995)

23. Joundrey, D.N., Taylor, A.G.: The Organization of Information. Library and In-
formation Science, Libraries Unlimited, fourth edn. (2017)

24. Klyne, G., Carroll, J.: Resource Description Framework (RDF) Concepts
and Abstract Syntax. http://www.w3.org/TR/2004/REC-115-concepts-20040210/
(February 2004)

25. Knublauch, H., Kontokostas, D.: Shapes Constraint Language (SHACL) - W3C
Recommendation. https://www.w3.org/TR/shacl/ (July 20 2017)

26. Matsumoto, S., Yamanaka, R., Chiba, H.: Mapping RDF graphs to property
graphs. In: Proc. of the Fifth International Workshop on Practical Application
of Ontology for Semantic Data Engineering (2018)

27. Nguyen, V., Leeka, J., et al.: A formal graph model for rdf and its implementation.
arXiv:1606.00480 (2016)

28. Ouksel, A.M., Sheth, A.: Semantic interoperability in global information systems.
SIGMOD Rec. 28(1), 5–12 (Mar 1999)

29. Parent, C., Spaccapietra, S.: Issues and approaches of database integration. Com-
mun. ACM 41(5), 166–178 (May 1998)

30. Parent, C., Spaccapietra, S.: Database integration: the key to data interoperability.
Advances in Object-Oriented Data Modeling (2000)

31. Park, J., Ram, S.: Information systems interoperability: What lies beneath? ACM
Transactions on Information Systems 22(4), 595–632 (Oct 2004)

32. Pokorný, J., Valenta, M., et al.: Integrity constraints in graph databases. Procedia
Computer Science 109, 975–981 (2017)

33. Predoiu, L., Zhdanova, A.V.: Semantic Web Languages and Ontologies, p. 7. En-
cyclopedia of Internet Technologies and Applications, IGI Global (2008)

34. Prud’hommeaux, E., Labra Gayo, J.E., Solbrig, H.: Shape expressions: An RDF
validation and transformation language. In: Proceedings of the 10th International
Conference on Semantic Systems (SEM). pp. 32–40. ACM, New York, NY, USA
(2014)

35. Prud’hommeaux, E., Seaborne, A.: SPARQL Query Language for RDF - W3C
Recommendation. https://www.w3.org/TR/rdf-sparql-query/ (January 15 2008)

36. van Rest, O., Hong, S., Kim, J., Meng, X., Chafi, H.: PGQL: a Property Graph
Query Language. In: Proc. of the Int. Workshop on Graph Data Management
Experiences and Systems (GRADES) (2013)

37. Robinson, I., Webber, J., Eifrem, E.: Graph Databases. O’Reilly Media, first edn.
(June 2013)

38. S.Ceri, Tanca, L., Zicari, R.: Supporting interoperability between new database
languages. In: Proc. of the 5th Annual European Computer Conference (Com-
pEuro) (1991)

39. Schätzle, A., Przyjaciel-Zablocki, M., Berberich, T., Lausen, G.: S2X: Graph-
parallel querying of RDF with GraphX. In: Biomedical Data Management and
Graph Online Querying. pp. 155–168. Springer International Publishing (2016)

40. Sheth, A.P.: Changing Focus on Interoperability in Information Systems: From
System, Syntax, Structure to Semantics, pp. 5–29. Springer US (1999)

41. Szárnyas, G., Marton, J., Maginecz, J., Varró, D.: Reducing property graph
queries to relational algebra for incremental view maintenance. arXiv preprint
arXiv:1806.07344 (2018)

26

42. Tandy, J., Herman, I., Kellogg, G.: Generating RDF from Tabular Data on the
Web - W3C Recommendation. https://www.w3.org/TR/csv2rdf/ (December 17
2015)

43. Thakkar, H., Punjani, D., Auer, S., Vidal, M.E.: Towards an integrated graph
algebra for graph pattern matching with Gremlin. In: International Conference on
Database and Expert Systems Applications. pp. 81–91. Springer (2017)

44. Thakkar, H., Punjani, D., Lehmann, J., Auer, S.: Two for one: Querying property
graph databases using SPARQL via gremlinator. In: Proc. of the 1st ACM SIG-
MOD Joint International Workshop on Graph Data Management Experiences &
Systems (GRADES) and Network Data Analytics (NDA). pp. 1–5. ACM (2018)

45. Thakkar, H., Punjani, D., et al.: A stitch in time saves nine–SPARQL querying of
property graphs using gremlin traversals. arXiv:1801.02911 (2018)

46. Tomaszuk, D.: RDF Data in Property Graph Model. In: Proc. of the 10th In-
ternational Conference on Metadata and Semantics Research (MTSR). vol. 672
(2016)

47. Tomaszuk, D., Angles, R., Szeremeta, L., Litman, K., Cisterna, D.: Serialization for
property graphs. In: Proc. of the 15th International Conference Beyond Databases,
Architectures and Structures (BDAS) (2019)

48. Zhan, J., Luk, W.S., Wong, C.: An Object-Oriented Approach to Query Interop-
erability, pp. 141–153. Springer US (1996)

27

Trajectory Patterns Based on Segment-Cutting
Clustering

Luis Cabrera-Crot1, Mónica Caniupán2, Andrea Rodríguez1, and Diego Seco1

1 Universidad de Concepción, Chile
2 Universidad del Bío-Bío, Chile

luiscabrera@udec.cl, mcaniupan@ubiobio.cl, andrea@udec.cl,
dseco@udec.cl

Abstract. Trajectory patterns characterize similar behaviors among trajectories,
which play an important role in applications such as urban planning, traffic con-
gestion control, and studies of animal migration and natural phenomena. In this
paper we model trajectories as a sequence of line segments that represent the
steady movement of an object along time. We use a segment-clustering process
to group trajectories’ segments and partial segments based on their temporal and
spatial closeness. Then, it defines a trajectory pattern that results from the ag-
gregation of segment clusters, aggregation that is not only based on spatial and
temporal sequentiality, but also on the compatibility of trajectories in each seg-
ment cluster. The experimental assessment shows the effectiveness of the method.

Keywords: Pattern recognition · data mining · trajectories · spatio-temporal databases.

1 Introduction

Due to the current advances in sensor networks, wireless technologies, and RAID-
enabled ubiquitous computing, data about moving objects (also called trajectories) is
an example of massive data relevant in many real applications [4]. According to [4], a
trajectory pattern is a set of individual trajectories that visit the same sequence of places
with similar travel times. A classical representation of trajectories is given by a sequence
of time-stamped locations in a, typically, 2D space trajectory clustering algorithms aim
at grouping similar trajectories (or part of trajectories) according to similarity measures.
The main problem of trajectory aggregation is the imprecision of spatio-temporal data
[8], which makes more challenging the definition of similarity measures that compare
different trajectories. There are several notions of trajectory similarity measures [13]
being the Euclidean Distance Measure, in its simplest version, robust for trajectory
shifts.

We propose a method to derive trajectory patterns, which correspond to patterns of
trajectories with similar behavior during a time interval. To obtain the trajectory pat-
terns, we first group complete or partial segments of trajectories that have a similar
behavior in space and time. Then we aggregate segment clusters considering a compat-
ibility measure. A similarity measure in terms of a distance function is sensible to the
visual comparison, is computationally affordable, and is complemented with strategies
to avoid sensitivity to sampling rate and noise. We focus here on a similarity measure

28

2 Luis Cabrera-Crot et al.

defined in terms of Euclidean distance for free movements, but it is also possible to
consider different distance functions when trajectories are constrained to other types
of spaces such as networks. Using the Euclidean distance, two segments of trajectories
can be considered similar if they coincide (approximately) in their starting and end-
ing points. In addition, two segments can be also considered similar if they coincide
in some parts of the segments [6, 12]. But it is not enough to have spatial similarity;
temporal similarity must ensure that trajectories also occur close in time to capture the
time-sensitivity of the similar behavior.

There exist several proposals for the extraction of trajectory patterns [6, 5, 1, 8, 3,
13, 12, 14]. They mostly vary in terms of their similarity functions and the capacity of
making incremental extraction of patterns. They consider similarity between sampling
points of trajectories (i.e., segments of trajectories), without considering that, between
sampling points, trajectories can be partially similar. According to [14] our work falls
in the category of trajectory clustering. We argue in this work that clustering not only
whole segments, but also portions of segments, captures similarity between trajectories
that could otherwise be underestimated.

We compare our proposal with the work presented in [6] which proposes the parti-
tion and group framework that allows the discovery of common sub-trajectories from a
trajectory database. First, it partitions trajectories into a set of line segments and then it
groups similar complete line segments. Trajectories are partitioned according to char-
acteristics points. Then, they generate a representative trajectory for each cluster. The
algorithm they propose to obtain clusters is based on a suitable distance function, which
is composed of the perpendicular distance, the parallel distance, and the angle dis-
tance. The algorithm works over a set of line segments and classifies them as part of
a cluster or as a noise. Only clusters with a cardinality over a threshold are considered
valid. Finally, the algorithm computes a representative trajectory for every cluster. The
main difference of this previous work with respect to our proposal is that they cluster
complete line segments, while we are able to cluster portions of line segments. In addi-
tion, we also include time in the comparison of segments and, when obtaining clusters,
we do not exclude a segment as a noise, but we keep portions of segments that do not
match a cluster, and use them in future computations of clusters. Only at the end of the
process of clustering, we eliminate noise segments. In this way, our implementation is
not strict with possible noise segments as the one proposed in [6].

2 Trajectory Pattern

A trajectory of an object is represented based on points with temporal dimension [5].
A point SPoint is a tuple (x, y) on the Euclidean space and a temporal point TPoint
is a tuple (SPoint, t) where t is a time instant. For simplicity, we also refer as a time
interval a tuple TT = [ts, te], where ts, te ∈ R and te ≥ ts. A segment S of an object’s
trajectory is a pair of TPoints [Ps,Pe], where Ps = ((xs, ys), ts), Pe = ((xe, ye), te),
and te > ts. The definition of trajectory is based in the definition given in [9]. A trajec-
tory T is a tuple composed of an identification and a sequence of consecutive segments
〈id, S1,S2, . . . ,Sm〉 that describes the path of an object and where, for every pair of
consecutive segments Si = [Ps,Pe] and Sj = [P′s,P

′
e] in T, Pe.x = P′s.x,Pe.y = P′s.y

29

Trajectory Patterns Based on Segment-Cutting Clustering 3

and P′s.t− Pe.t ≤ ε, whereε is the length of the interval in which an object may stop at
a particular TPoint. We call sub-trajectory Ts to a subset of consecutive segments of an
object’s trajectory T. A sub-trajectory is also a trajectory. With some abuse of notation,
we say that Ts ⊆ T if Ts is a sub-trajectory of T.

Notice that a trajectory is a sequence of segments, which differs from the classi-
cal definition in terms of a sequence of TPoints. We explicitly define trajectories as a
sequence of segments to emphasize the treatment of the segments in the clustering pro-
cess. Also, a sub-segment is also a segment. At a physical level, however, we can avoid
the duplication of endpoints in the definition of segments.

Let T be a trajectory, S, S1, and S2 be segments, and P and P′ be SPoints, the
following are useful operators.

– SD(P,P′): it denotes the Euclidian spatial distance between two SPoints P and
P′. If points are on a network, then this should be the distance on the network.
Overloading this operator, SD(S,P) is the shortest Euclidian distance from SPoint
P to segment S (i.e., the length of the perpendicular line from P to S).

– TD(P,P′) = |P.t − P′.t|: it is the temporal distance between two TPoints P and
P′.

– ID(T): it returns the identification of a trajectory T.
– ID(S): it returns the identification of the trajectory to which the segment S belongs

to.
– STARTs(T): it returns the starting segment of a trajectory T.
– ENDs(T): it returns the ending segment of a trajectory T.
– STARTp(S): it returns the starting point of a segment S.
– STARTp(T): it returns the starting point of a trajectory T, this is, STARTp(T) =

STARTp(STARTs(T)).
– ENDp(S): it returns the ending point of a segment S.
– ENDp(T): it returns the ending point of a trajectory T.
– LENGTH(T): it returns the number of segments of T.
– ANGLE(S1,S2): it returns the formed angle between segments S1 and S2.

2.1 Relations between Trajectory Segments

Intuitively, two segments S1 and S2 will be totally related if their initial and ending
points are close, spatially and temporally, and they have the same direction, this is,
the angle between the segments is less than 90◦. We formalize this in the following
definition.

Definition 1. Let S1 and S2 be two trajectory segments from different trajectories. S1
and S2 are totally related if and only if:

– SD(STARTp(S1),STARTp(S2)) ≤ ∆s

– TD(STARTp(S1),STARTp(S2)) ≤ ∆t

– SD(ENDp(S1),ENDp(S2)) ≤ ∆s

– TD(ENDp(S1),ENDp(S2)) ≤ ∆t

– ANGLE(S1,S2) < 90o. 2

30

4 Luis Cabrera-Crot et al.

(a) (b) (c) (d)

Fig. 1. Partial relations between two segments S1 and S2 from different trajectories

Two segments are partially related if they are not totally related, they have the same
direction, and one extreme point of a segment is close, spatially and temporally, to some
point of the other segment. It is possible to have different forms of partial relations
between two segments. We have considered four forms of partial relations.

Definition 2. Let S1 and S2 be two trajectory segments that are not totally related.
S1 and S2 are partially related if and only if they satisfy one of the following partial
relations, which are illustrated in Figure 1:

– Case 1 (Figure 1(a)). In this case: (i) The starting points of segments S1 and S2

are spatially and temporally close to each other. This is, they satisfy the distances
established by threshold ∆s and ∆t. (ii) The ending point of segment S1 is not
close to any point of segment S2, but the ending point of segment S2 is close to
some point (different from an endpoint) of segment S1.

– Case 2 (Figure 1(b)). In this case: (i) The ending points of segments S1 and S2 are
spatially and temporally close to each other. (ii) The starting point of segment S1 is
not close to any point of segment S2, but the starting point of segment S2 is close
to some point (different from an endpoint) of segment S1.

– Case 3 (Figure 1(c)). In this case: Neither the starting and ending point of segment
S1 are close to any point of segment S2, but the starting and ending point of segment
S2 are close to some point (different from an endpoint) of segment S1.

– Case 4 (Figure 1(d)). In this case: (i) The starting point of segment S1 is close
to some point of segment S2. (ii) The ending point of segment S1 is not close to
any point of S2.(iii) The starting point of segment S2 is not close to any point of
segment S1. (iv) The ending point of segment S2 is close to some point (different
from an endpoint) of segment S1. 2

2.2 Segment Clustering

We use the concept of segment cluster to refer to a set SC = {S1, S2, . . . , Sn} of not
necessarily consecutive segments or sub-segments from different trajectories that are
totally related to each other. The process of generating segment clusters that are not
totally related is as follows. Consider a trajectory Ti with segments S1, . . . , Sn: (i) If a
segment Si of Ti is not totally related to any of the segments in the already computed
segment clusters, but it is partially related to some segment Sj in a cluster cj , then: (i)
We first identify the type of partial relation between segments Si and Sj , according to
Definition 2. (ii) A new segment Ss is generated and corresponds to the projection of

31

Trajectory Patterns Based on Segment-Cutting Clustering 5

the shortest segment on the longest segment. Note that this implies to calculate a TPoint
that splits the original segment. Let us assume that Si is shorter than Sj then, segment
Ss corresponds to the projection of Si over Sj . (iii) Cluster cj is updated and contains
segments Ss and Si, a new cluster is generated containing the residual segment Sj−Ss.

The dynamic computation of segment clusters refers to the capability of adding new
trajectory segments when we had already computed a set of segment clusters, without
starting the whole process of segment clustering. The segments of a new trajectory can
be added into existing segment clusters or can form new clusters.

We introduce the following notation over segment clusters that is useful in the
next definition of trajectory patterns. Let cl be a segment cluster composed of a set
S of segments. Then, (i) CONVEX(cl) denotes the convex hull over the TPoints that
form the segments of the cluster; (ii) TInterval(cl) denotes the time interval [ts, te]
such that ts = min∀si∈S{STARTp(si).t} and te = max∀si∈S{ENDp(si).t}; and (iii)
IDS(cl) = {ID(si)|si ∈ cl} is the set of trajectories’s ids that are part of the cluster.
Given a segment cluster cl, we call the pattern of cl, the tuple of the form (geo, tt, ids),
with geo = CONVEX(cl), tt = TInterval(cl), and ids = IDS(cl). Notice that this
pattern is essentially a geometric approximation of the segment cluster. For simplicity,
we use cp.a with a ∈ [geo, tt, ids] to access each of the elements of the pattern cp.

2.3 Trajectory Pattern

Segment clusters can be aggregated to form trajectory patterns if, they have at least
two segments, their areas intersect, their share a temporal interval, and they satisfy
a compatibility threshold of common trajectories. Trajectory patterns are patterns that
combine two or more patterns extracted from single segment clusters. We first introduce
the concept of compatible patterns, useful to define trajectory patterns.

Definition 3. Let cp1, cp2 be two patterns, with cp1 6= cp2. Patterns are compatible if:

1. cp1.geo ∩spatial cp2.geo 6= ∅, where ∩spatial denotes geometric intersection.

2. cp1.tt ∩time cp2.tt 6= ∅, where ∩time denotes temporal intersection.

3. |cp1.ids ∩ cp2.ids|
|cp1.ids ∪ cp2.ids| >= ∆j , where ∆j is the threshold of the number of common
trajectories. 2

Definition 4. Let cp1 and cp2 be two compatible patterns. A trajectory pattern tp for
cp1 and cp2 is a tuple of the form (geo, tt, ids), where geo is the geometric union of
cp1.geo and cp2.geo, tt is the time union of cp1.tt and cp2.tt, and ids the set union of
cp1.ids and cp2.ids. Because trajectory patterns are patterns, we can recursively apply
this definition to aggregate more than two patterns. 2

The extraction of trajectory patterns starts with an empty set of trajectory patterns
TP, a set C of segment clusters and its corresponding patterns C∗ and, iteratively, finds
compatible clusters to aggregate to trajectory patterns. At the end of this iterative pro-
cess, TP is empty if it does not find compatible clusters or contains patterns composed
of at least two patterns in C∗. This concept is similar to the concept of macro clus-
ters presented in [7], where, unlike our proposal, patterns of trajectories are computed
considering only complete segments of trajectories and only spatial closeness.

32

6 Luis Cabrera-Crot et al.

(a) Segment clusters (b) Segment clusters to be aggregated (c) Convex hull

Fig. 2. Aggregation of segment clusters

Example 1. Consider the segment clusters in Figure 2(a). Figure 2(b) shows the seg-
ment clusters that can be aggregated from the set of segment clusters, this is, clusters
cl1, cl3, cl4 and cl5. Clusters cl2, cl6, cl7 and cl8 are discarded because they have only
one segment. Since the areas and time intervals of clusters cl1, cl3, cl4 and cl5 inter-
sect (see Figure 2(b)), they may be aggregated if they satisfy a specific compatibility
threshold (∆j). 2

Intuitively, a set of trajectory patterns corresponds to the aggregation of trajecto-
ries that have similar behavior and satisfy a compatibility threshold, which indicates a
percentage of common trajectories. Note that by applying Definition 4 iteratively, it is
possible to get a set of trajectory patterns, each of them with possible different levels of
compatibility.

3 Evaluation and Comparison with the State of the Art

To show that our method is effective to find trajectory patterns we use both real and
synthetic datasets. To evaluate effectiveness we compare our method with the method,
called Traclus, proposed in [6], which does not consider the temporal distance between
segments, and also compare complete segments but not sub-segments of trajectories.
In this case we use synthetic datasets. We also present a qualitative evaluation of our
method that shows some features that are not supported by the baseline. To do so, we
use a real dataset that corresponds to truck trajectories in Greece that has been used in
[10, 11, 2] to determine trajectory patterns.

3.1 Quantitative Comparison with the State of the Art

We generated 1,000 trajectories with the Brinkhoff generator3. Then, we randomly se-
lected 100 of them and created 50 copies of each one. Thus, these 100 trajectories
correspond to the ground truth of trajectory patterns that a clustering algorithm should
recognize as patterns. Figure 3 shows the comparison between the baseline method
presented in [6] and our proposed method.

3 http://chorochronos.datastories.org/?q=node/51

33

Trajectory Patterns Based on Segment-Cutting Clustering 7

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on

Recall

Traclus
Proposal

Proposal-50

Fig. 3. Comparison with the state of the art

For our method we graphic two lines, one unfiltered and another filtering those
segments that have less than 50 elements. For each method we show a line and not
a single point because, to consider a segment of the ground truth equal to a segment
obtained by an algorithm, a tolerance may be applied to ignore precision issues. For
each method, the point located on the leftmost endpoint is the one with tolerance 0,
and then it increases to 10, 100 and 250. Obviously, the greater the tolerance, we are
considering more distant segments as equal. Even so, they are small tolerance values.

In the chart, we show precision-recall values, which are standard in the information
retrieval community. In our domain, precision may be interpreted as the portion of the
ground truth that an algorithm can retrieve, whereas recall would be the portion of the
retrieved patterns that are indeed in the ground truth. Hence, the ideal method would
be the one that gets earlier to the upper right corner (precision 1 and recall 1). As it
can be seen, our method with filtering is the one that dominates the others by being the
only one to get close to that point. Regarding our unfiltered method, although it obtains
a precision of 1, it is at the expense of the recall (that is, it recovers all the reference,
but also a lot of noise). The baseline is improving by increasing the tolerance in the
comparison, but it does not reach our method with filtering.

3.2 Qualitative evaluation of our proposal

The trucks dataset contains GPS (with reference system GGRS87) positions of 50
trucks transporting concrete in the Athens area between August and September of
2002. This dataset contains temporal information, and the time interval to take the
samples is 30 seconds. The set contains 111,927 segments, conforming 276 trajecto-
ries, with an average of 406 segments per trajectory. We use a spatial threshold ∆s

of 420 units, a temporal threshold ∆t of 209,950 units of time, and different com-

34

8 Luis Cabrera-Crot et al.

patibility thresholds. These thresholds were chosen because they are the values that
minimize a ClusterCost function defined for a set of segment clusters C and a set R
of isolated segments not included in any ci ∈ C. Function ClusterCost is defined as:
ClusterCost = ClusterWeight+ NoiseWeight, where:

ClusterWeight =

{∑
ci∈C

AREA(CONVEX(ci))
|IDS(ci)| |C| > 0

0 otherwise

NoiseWeight =

{∑
ri∈R LENGTH(ri)

2 ∗ π |R| > 0

0 otherwise

Figure 4(a) shows the 17,855 segment clusters obtained by our algorithms with
∆s = 420 and ∆t = 209, 950.

(a) Segment clusters (b) Trajectory patterns for ∆j = 0%

Fig. 4. Segment clusters and trajectory patterns for the trucks dataset

Trajectory patterns for the trucks dataset We use different compatibility thresholds
to compute trajectory patterns considering the 17,855 segment clusters in Figure 4(a).
Consider ∆j = 0%, this is, there is not a constraint over a percentage of common
trajectories. In this case, all the segment clusters whose areas and time intervals intersect
form a unique trajectory pattern. Figure 4(b) shows the result of the experiment, where
there are six trajectory patterns and two non-aggregate clusters.

A value for ∆j greater than 50% provides a lower proportion of trajectory patterns
with respect to the total of trajectory patterns and non-aggregate clusters. Figure 5(a)
shows the 3, 064 trajectory patterns with ∆j = 60%. 5(b) illustrates the result for
∆j = 100%, in which case there are 1, 963 trajectory patterns.

Trajectory patterns under different temporal intervals We also compute trajectory
patterns for different periods of time. They were obtained considering the following pa-
rameters ∆s = 420 units, ∆t = 209, 950 units of time, and ∆j = 20% (compatibility
threshold). We consider different days of the week and weekends, and we can conclude
that during the week, trucks remain mostly in the central zone in the afternoons. Figure

35

Trajectory Patterns Based on Segment-Cutting Clustering 9

(a) ∆j = 60% (b) ∆j = 100%

Fig. 5. Trajectory patterns for different ∆j

6 shows the trajectory patterns for September 11 (Wednesday) to September 14 (Satur-
day) of 2002. This kind of finding would not be possible with the algorithm in [6] as it
does not consider time.

(a) September 11 (b) September 12 (c) September 13 (d) September 14

Fig. 6. Trajectory patterns for days of September of 2002

4 Conclusions and Future Work

We presented a new concept of trajectory pattern that corresponds to the aggregation of
compatible segment clusters from trajectories. To compute segment clusters, we con-
sider the spatial and temporal distance between segments and sub-segments of trajec-
tories, and also the angle of the segments. Aggregation of segment clusters is possible
if the clusters satisfy a compatibility threshold, have more than one segment, and their
areas and time intervals intersect. Our method allows the dynamic computation of seg-
ment clusters, and process the called macro clustering presented [7]. The experimenta-
tion we reported shows that the method is effective for computing trajectory patterns.
For future work, we would like to optimize the algorithms for segment clustering and
trajectory patterns detection. To do so, we can consider indexing structures in space and
time.

36

10 Luis Cabrera-Crot et al.

Acknowledgements

Mónica Caniupán and Luis Cabrera-Crot are partially funded by DIUBB [181315 3/R],
and the Algorithms and Databases Research Group [160119/EF]. Andrea Rodríguez is
partially funded by Fondecyt [1170497], and the Complex Engineering Systems Insti-
tute (CONICYT: FBO16). Diego Seco is partially funded by Fondecyt [1170497].

References

1. Andrienko, N., Andrienko, G.: Spatial generalization and aggregation of massive movement
data. IEEE Trans. Vis. Comput. Graph. 17(2), 205–219 (2011)

2. Frentzos, E., Gratsias, K., Pelekis, N., Theodoridis, Y.: Algorithms for nearest neighbor
search on moving object trajectories. Geoinformatica 11(2), 159–193 (2007)

3. Giannotti, F., Nanni, M., Pedreschi, D.: Efficient mining of temporally annotated sequences.
In: Proc. of the Sixth International Conference on Data Mining. pp. 348–359 (2006)

4. Giannotti, F., Nanni, M., Pinelli, F., Pedreschi, D.: Trajectory pattern mining. In: Proc. of
the 13th International Conference on Knowledge Discovery and Data Mining. pp. 330–339
(2007)

5. Hung, C.C., Peng, W.C., Lee, W.C.: Clustering and aggregating clues of trajectories for min-
ing trajectory patterns and routes. The VLDB Journal 24(2), 169–192 (2015)

6. Lee, J.G., Han, J., Whangl, K.Y.: Trajectory clustering: a partition-and-group framework. In:
Proc. of the SIGMOD Conference. pp. 593–604 (2007)

7. Li, Z., Lee, J.G., Li, X., Han, J.: Incremental clustering for trajectories. In: Proc. of the 15th
International Conference on Database Systems for Advanced Applications. pp. 32–46 (2010)

8. Meratnia, N., de By, R.: Aggregation and comparison of trajectories. In: Proc. of the Tenth In-
ternational Symposium on Advances in Geographic Information Systems. pp. 49–54 (2002)

9. Orlando, S., Orsini, R., Raffaetà, A., Roncato, A., Silvestri, C.: Trajectory data warehouses:
Design and implementation issues. Journal of Computing Science and Engineering 1(2),
211–232 (2007)

10. Panagiotakis, C., Pelekis, N., Kopanakis, I., Ramasso, E., Theodoridis, Y.: Segmentation and
sampling of moving object trajectories based on representativeness. IEEE Trans. on Knowl.
and Data Eng. 24(7), 1328–1343 (2012)

11. Pelekis, N., Kopanakis, I., Kotsifakos, E., Frentzos, E., Theodoridis, Y.: Clustering uncertain
trajectories. Knowledge and Information Systems 28(1), 117–147 (2011)

12. Sankararaman, S., Agarwal, P.K., Mølhave, T., Pan, J., Boedihardjo, A.P.: Model-driven
matching and segmentation of trajectories. In: Proc. of the 21st International Conference
on Advances in Geographic Information Systems. pp. 234–243 (2013)

13. Wang, H., Su, H., Zheng, K., Sadiq, S., Zhou, X.: An effectiveness study on trajectory simi-
larity measures. In: Proc. of the Twenty-Fourth Australasian Database Conference. pp. 13–22
(2013)

14. Zheng, Y.: Trajectory data mining: An overview. ACM TIST 6(3), 29:1–29:41 (2015)

37

Spanish Word Embeddings Learned on Word
Association Norms

Helena Gómez-Adorno1[0000−0002−6966−9912], Jorge
Reyes-Magaña2,3[0000−0002−8296−1344], Gemma

Bel-Enguix2[0000−0002−1411−5736], and Gerardo Sierra2[0000−0002−6724−1090]

1 Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas,
Universidad Nacional Autónoma de México, Ciudad de México, México

helena.gomez@iimas.unam.mx
2 Instituto de Ingenieŕıa, Universidad Nacional Autónoma de México,

Ciudad de México, México
gbele@iingen.unam.mx, gsierram@iingen.unam.mx

3 Facultad de Matemáticas, Universidad Autónoma de Yucatán,
Mérida, Yucatán

jorge.reyes@correo.uady.mx

Abstract. Word embeddings are vector representations of words in an
n-dimensional space used for many natural language processing tasks. A
large training corpus is needed for learning good quality word embed-
dings. In this work, we present a method based on the node2vec algorithm
for learning embeddings based on paths in a graph. We used a collection
of Word Association Norms in Spanish to build a graph of word connec-
tions. The nodes of the network correspond to the words in the corpus,
whereas the edges correspond to a pair of words given in a free association
test. We evaluated our word vectors in human annotated benchmarks,
achieving better results than those trained on a billion-word corpus such
as, word2vec, fasttext, and glove.

Keywords: word vectors · node2vec · word association norms · Spanish

1 Introduction

The representation of words in a vector space is a very active research area
in the latest decades. Computational models like the singular value decomposi-
tion (SVD) and the latent semantic analysis (LSA) are capable of modeling word
vector representations (word embeddings) from the term-document matrix. Both
methods can reduce a dataset of N dimensions using only the most important
features. Recently, Mikolov et al. [19] introduced word2vec inspired by the dis-
tributional hypothesis establishing that words in similar contexts tends to have
similar meanings [22]. This method uses a neural network in order to learn vector
representations of words by predicting other words in their context. The vector
representation of a word obtained by word2vec has the awesome capability of
conserving linear regularities between words.

38

2 H. Gómez-Adorno et al.

In order to build a model of adequate and reliable vector space, capable of
capturing semantic similarity and linear regularities of words, large volumes of
text are needed. Although word2vec is fast and efficient to train, and pre-trained
word vectors are usually available online, it is still computationally expensive
to process large volumes of data in non-commercial environments, that is, on
personal computers.

Free association is an experimental technique commonly used to discover the
way in which the human mind structures knowledge [8]. In free association tests,
a person is asked to say the first word that comes to mind in response to a given
stimulus word. The set of lexical relations obtained with these experiments is
called Word Association Norms (WAN). These kinds of resources reflect both
semantic and episodic contents [6].

In previous work [4] we learn word vectors in English from a graph obtained
from a WAN corpus. The vectors learned from this graph were able to map the
contents of semantic and episodic memory in vector space. For this purpose,
we used the node2vec algorithm [14] which is able to learn node mappings to
a continuous vector space from the complete network taking into account the
neighborhood of the nodes. The algorithm performs biased random paths to
explore different neighborhoods in order to capture not only the structural roles
of the nodes in the network but also the communities to which they belong to.

In this paper, we extend previous work of learning word vectors in English[4]
by learning vector representations of words from a resource that collects words
association norms in Spanish. We build two embedding resources of different di-
mensions, the first one based on Normas de Asociación Libre en Castellano [10]
(NALC), and the other using the corpus of Normas de Asociación de Palabras
para el Español de México [2] (NAP). The obtained embeddings from both re-
sources are available on GitHub, the NALC based embeddings4 and the NAP
based embeddings5.

The rest of the paper is organized as follows. In section 2, we discuss the
related work. In Section 3, we present the corpora of Word Association Norms.
In section 4, we describe the methodological framework for learning word vectors
from WAN’s. Section 5, shows the evaluation of the generated vectors, using a
word similarity dataset in Spanish. Finally, in section 6 we draw some conclusions
and point out to possible directions of future work.

2 Related Work

Semantic networks [25] are graphs relating words [1] used in linguistics and psy-
cholinguistics not only to study the organization of the vocabulary but also to
approach the structure of knowledge. Many languages have corpora of WAN.
In the past decades, different association lists were elaborated with the collab-
oration of a large number of volunteers. However, in recent years, the web has

4 https://github.com/jocarema/nalc_vectors
5 https://github.com/jocarema/nap_vectors

39

Spanish Word Embeddings Learned on WANs 3

become a natural way to get data to build such resources. Jeux de Mots6 pro-
vides an example in French [18], whereas the Small World of Words7 contained
datasets in 14 languages at the time of writing.

Sinopalnikova and Smrz [24] showed that WATs are comparable to balanced
text corpora and can replace them in case of absence of a corpus. The authors
presented a methodological framework for building and extending semantic net-
works with word association thesaurus (WAT), including a comparison of quality
and information provided by WAT vs. other language resources.

Borge-Holthoefer & Arenas [6] used free association information for extract-
ing semantic similarity relations with a Random Inheritance Model (RIM). The
obtained vectors were compared with LSA-based vector representations and the
WAS (word association space) model. Their results indicate that RIM can suc-
cessfully extract word feature vectors from a free association network.

In a recent work by De Deyne et al. [9] the authors introduced a method
for learning word vectors from WANs using a spreading activation approach in
order to encode a semantic structure from the WAN. The authors used part
of the Small World of Words network. The word association-based model was
compared with a word embeddings model (word2vec) using relatedness and sim-
ilarity judgments from humans, obtaining an average of 13% of improvement
over the word2vec model.

3 Word Association Norms in Spanish

Many languages have compilations of word association norms. In the past decades,
some interesting works have been developed with a large number of volunteers.
Among the most well-known English resources accessible on the web are the
Edinburgh Associative Thesaurus8 (EAT) [17] and the resource of Nelson et
al.9 [21].

For Spanish, there are some corpora of free words association, in this work
we used two WAN resources in Spanish: a) Corpus de Normas de Asociación
de Palabras para el Español de México (NAP) [2] and b) Corpus de Normas de
Asociación Libre en Castellano [10] (NALC).

The NAP corpus was elaborated with a group of 578 native Mexican speakers
young adults, 239 men and 339 women, with ages ranging from 18 to 28 years,
and with a range of education of at least 11 years. The total number of tokens
in the corpus is 65731, with 4704 different words. The authors used 234 stimulus
words, all of them common nouns taken from the MacArthur word compression
and production [16]. It is important to mention that although the stimuli are
always nouns, the associated words are free-choice, that is, the informants can
relate to the word stimulus with any word regardless of its grammatical category.

6 http://www.jeuxdemots.org/
7 https://smallworldofwords.org/
8 http://www.eat.rl.ac.uk/
9 http://web.usf.edu/FreeAssociation

40

4 H. Gómez-Adorno et al.

For each stimuli and its associates, the authors computed different measures:
time, frequency and association strength.

The NALC corpus includes 5819 stimuli words and their corresponding as-
sociates obtained from the free association responses of a sample of 525 subjects
for 247 words, of 200 subjects for 664 words and of 100 for the remaining words.
In the compilation of association norms, approximately 1500 university students
have participated so far. All the subjects had Spanish as their native language
and participated voluntarily in the empirical study. The total number of different
words in the corpus is 31207.

4 Learning Word Embeddings on Spanish WANs

The graph that represents a given WAN corpus is formally defined as G =
{V,E, φ} where:

– V = {vi|i = 1, ..., n} is the finite set of nodes with size n, V 6= ∅, which
corresponds to stimuli words along with its associates.

– E = {(vi, vj)|vi, vj ∈ V, 1 ≤ i, j ≤ n}, is the set of edges, which corresponds
to the connections between stimuli and associates words.

– φ : E → R, is a weighting function over the edges.

We performed experiments with directed and non-directed graphs. In the
directed graphs, each pair of nodes (vi, vj) follows an established order where
the initial node vi corresponds to the stimulus word and the final node vj to an
associated word. For the non-directed graph, all the stimuli are connected with
their correspondent associates without any order of precedence. We evaluated
three edges weighting functions:

Time It measures the seconds the participant takes to give an answer for each
stimulus.

Frequency It establishes the number of occurrences of each of the associated
words with a stimulus. In this work we use the inverse frequency (IF):

IF = ΣF − F
where F the frequency of a given associated word, and ΣF is the sum of the
frequencies of the words connected to the same stimulus

Association Strength Establishes a relation between the frequency and the
number of responses for each stimulus. It can be calculated as follows:

ASW =
AW ∗ 100

ΣF
where AW is the frequency of a given word associated with a stimulus, and
ΣF the sum of the frequencies of the words connected the same stimulus
(the total number of answers). We also used the inverse of the association
strength (IAS):

IAS = 1− F

ΣF

41

Spanish Word Embeddings Learned on WANs 5

The NAP corpus provides the three weighting functions, however for the
NALC corpus only the association strength is available. Thus, in our evaluation
we only report results using the association strength for the NALC corpus.

4.1 Node2vec

Node2vec [14] finds a mapping f : V → Rd that transforms the nodes of a graph
into vectors of d-dimensions. It defines a neighborhood in a network Ns(u) ⊂ V
for each node u ∈ V through a S sampling strategy. The goal of the algorithm
is to maximize the probability of observing subsequent nodes on a random path
of a fixed length.

The sampling strategy designed in node2vec allows it to explore neighbor-
hoods with skewed random paths. The parameters p and q control the change be-
tween the breadth-first search (BFS) and depth-first search (DFS) in the graph.
Thus, choosing an adequate balance allows preserving both the structure of
the community and the equivalence between structural nodes in the new vector
space.

In this work, we used the implementation of the project node2vec, which is
available on the web10 with default values for all parameters. We also examined
the quality of vectors with a different number of dimensions.

5 Spanish Word Embeddings Evaluation

There are several evaluation methods for unsupervised word embeddings method-
ologies [23], which are categorized as extrinsic and intrinsic. In the extrinsic
evaluation, the quality of the word vectors is evaluated by the improvement of
performance in a given natural language processing tasks (PLN) [12, 13]. In-
trinsic evaluation measures the ability of word vectors to capture syntactic or
semantic relationships [3].

The hypothesis of the intrinsic evaluation is that similar words should have
similar representations. So, we first performed a visualization of a sample of
words using the T-SNE projection of the word vectors in a two-dimensional
vector space. Figure 1 shows how the words that are related to each other are
grouped. We show the word vectors obtained from graphs with the three weight-
ing functions using the NAP corpus only. It is observed that in all cases the
vectors illustrate some interesting phenomena. For example, when frequency is
taken as weight (the graph below), the word pájaro (bird) is drawn very close
to avión (plane). From this, it is inferred that the feature “fly” is more repre-
sentative than “animal” for the model. For its part, the word caballo (horse), is
represented closer to camioneta (truck) than to other animals, focusing more on
its status as “transportation”.

In addition, we evaluated the ability of word vectors to capture semantic
relationships through a word similarity task. Specifically, we used two widely

10 http://snap.stanford.edu/node2vec/

42

6 H. Gómez-Adorno et al.

Fig. 1. Projection of the word vectors in 5 semantic groups (of ten words each).

known corpora: a) the corpus WordSim-353 [11] composed of pairs of terms se-
mantically related with similarity scores given by humans and b) the MC-30 [20]
benchmark containing 30 word pairs. Both datasets in its Spanish version 11 [15].

We calculated the cosine similarity between the vectors of word pairs con-
tained in the above mentioned datasets and compare it with the similarity given
by humans using the Spearman correlation. To deal with the non-inclusion of
every word of the testing data sets in our NALC word association norms, we
introduced the concept of overlap in the experiments and calculated the total
number of common words between the lists that are being compared. The oth-
ers are excluded from the evaluation. In principle, having large overlaps is a
positive feature this approach. Tables 1 and 2 present the Spearman corre-

11 http://web.eecs.umich.edu/~mihalcea/downloads.html

43

Spanish Word Embeddings Learned on WANs 7

lation, of the similarity given by human taggers, with the similarity obtained
with word vectors (learned from NAP and NALC separately). We also report
different dimensions of word vectors learned on the non-directed graphs with
different weighting functions. We also report the overlap, which is the number
of words that can be found in in both, the given WAN corpus (NAP or NALC)
and the evaluation dataset (ES-WS-53 or MC-30).

Table 1. Spearman rank order correlations between Spanish WAN embeddings (based
on cosine similarity) and the ES-WS-353 dataset.

NAP NALC
Overlap 140 Overlap 322

Dimension Inv. Frequency Inv. Association Time Inv. Association

300 0.489 0.463 0.461 0.650
200 0.454 0.456 0.491 0.641
128 0.503 0.463 0.450 0.659
100 0.471 0.478 0.495 0.664
50 0.523 0.503 0.503 0.626
25 0.484 0.478 0.572 0.611

Table 2. Spearman rank order correlations between Spanish WAN embeddings (based
on cosine similarity) and the MC-30 dataset

NAP NALC
Overlap 11 Overlap 27

Dimension Inv. Frequency Inv. Association Time Inv. Asociation

300 0.305 0.563 0.545 0.837
200 0.468 0.381 0.263 0.844
128 0.545 0.272 0.300 0.767
100 0.336 0.418 0.372 0.806
50 0.527 0.509 0.272 0.814
25 0.454 0.400 0.563 0.788

It can be observed that the word embeddings obtained from the NALC corpus
achieved better correlation with the human similarities than the embeddings
obtained from the NAP corpus in both datasets, ES-WS-53 and MC-30. The
difference in the results can be explained by the size of the vocabulary in both
WANs, the NALC corpus has higher overlap with both evaluation datasets than
the NAP corpus.

44

8 H. Gómez-Adorno et al.

In order to test and compare the quality of the Spanish word vectors, we
also performed the experiments with pre-trained Spanish vectors12. We selected
three word embeddings models: word2vec13, gloVe14, and fasttext15.

Table 3 shows the Spearman rank order correlation between the cosine simi-
larity obtained with word vectors pre-trained in large corpora and the similarity
of humans (obtained from WordSim-353) and MC-30 datasets) in comparison
with the correlation between NAP embeddings and the humans rated similari-
ties. In the same way, Table 4 shows the same comparison with pre-trained word
vectors and the NALC based embeddings.

The highest correlation value was obtained with the vectors trained with the
fasttext [5] model. The vectors trained on the Wikipedia in Spanish obtained
the best results among the pre-trained models. Our method outperformed the
results obtained by the pre-trained vectors when the vectors were learned on the
NALC corpus in both evaluation datasets, ES-WS-353 and MC-30.

Table 3. Spearman rank order correlation comparison of NAP embeddings and pre-
trained word vectors with the evaluation datasets.

Source Vector size MC-30 (Overlap 11) ES-WS-353 (Overlap 140)

Fasttext-sbwc 300 0.881 0.639
Fasttext-wiki 300 0.936 0.701
Glove-sbwc 300 0.827 0.532
Word2vec-sbwc 300 0.890 0.634
n2v-Inverse Association 300 0.563 0.463
n2v-Inverse Frequency 300 0.305 0.489
n2v-Time 25 0.563 0.572

6 Conclusions and Future Work

We introduced a method for learning Spanish word embeddings from a Corpus of
Word Association Norms. For learning the word vectors, we applied the node2vec
algorithm on the graph of two WAN corpora, NAP and NALC.

We employ weighting functions on the edges of the graph taking into account
three different criteria: time, inverse frequency and inverse associative strength.
The best results have been obtained with the association strength, however,
the time weighting function also achieved high results. Words with a higher

12 https://github.com/uchile-nlp/spanish-word-embeddings
13 https://code.google.com/archive/p/word2vec/
14 https://nlp.stanford.edu/projects/glove/
15 https://github.com/facebookresearch/fastText/blob/master/

pretrained-vectors.md

45

Spanish Word Embeddings Learned on WANs 9

Table 4. Spearman rank order correlation comparison of NALC embeddings and pre-
trained word vectors with the evaluation datasets.

Source Vector size MC-30 (Overlap 27) ES-WS-353 (Overlap 322)

Fasttext-sbwc 300 0.762 0.613
Fasttext-wiki 300 0.793 0.624
Glove-sbwc 300 0.707 0.482
Word2vec-sbwc 300 0.795 0.624
n2v-Inverse Association 300 0.837 0.650
n2v-Inverse Association 200 0.844 0.664

association strength usually have a shorter formulation time, which leads to the
algorithm to connect more related words in a neighborhood because the node2vec
algorithm looks for shorter paths in the graphs.

The results we obtained using the NALC corpus are higher than those ob-
tained with pre-trained word embeddings trained on large corpora. The perfor-
mance even improves the results achieved with the vectors trained on the Spanish
billion words corpus [7]. However, some simple strategies would help improve our
results. Some of them would be to adjust the parameters of the algorithm and
adapt the system to different types of neighborhoods for the nodes, which could
produce different configurations of the vectors. In future work we will perform an
extrinsic evaluation these Spanish word vectors, i.e. in some Natural Language
Processing task [4].

The evaluations carried out with the vectors learned on the NAP corpus
also showed promising results with respect to the similarity and relational in-
dexes. However, due to the low vocabulary length, the results were lower than
those obtained on pre-trained embeddings. As future work, we plan to solve
this problem by automatically generate word association norms between pairs of
words retrieved from a medium-sized corpus. With this process, we will build a
new resource that can account for syntactic, semantic and cognitive connections
between words.

Acknowledgments

This work was partially supported by the following projects: Conacyt FC-2016-
01-2225 and PAPIIT IA401219, IN403016, AG400119.

References

1. Aitchison, J.: Words in the mind: An introduction to the mental lexicon. John
Wiley & Sons (2012)

2. Arias-Trejo, N., Barrón-Mart́ınez, J.B., Alderete, R.H.L., Aguirre, F.A.R.: Corpus
de normas de asociación de palabras para el espaol de Mxico [NAP]. Universidad
Nacional Autnoma de Mxico (2015)

46

10 H. Gómez-Adorno et al.

3. Baroni, M., Dinu, G., Kruszewski, G.: Don’t count, predict! a systematic compari-
son of context-counting vs. context-predicting semantic vectors. In: Proceedings of
the 52nd Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers). vol. 1, pp. 238–247 (2014), http://www.aclweb.org/anthology/
P14-1023

4. Bel-Enguix, G., Gómez-Adorno, H., Reyes-Magaña, J., Sierra, G.: Wan2vec: Em-
beddings learned on word association norms. Semantic Web (2019)

5. Bojanowski, P., Grave, E., Joulin, A., Mikolov, T.: Enriching word vectors with
subword information. Computing Research Repository arXiv:1607.04606 (2016).
https://doi.org/10.1162/tacl a 00051, https://arxiv.org/abs/1607.04606

6. Borge-Holthoefer, J., Arenas, A.: Navigating word association norms to extract se-
mantic information. In: Proceedings of the 31st Annual Conference of the Cognitive
Science Society (2009)

7. Cardellino, C.: Spanish Billion Words Corpus and Embeddings (March 2016),
http://crscardellino.github.io/SBWCE/

8. De Deyne, S., Navarro, D.J., Storms, G.: Associative strength and semantic acti-
vation in the mental lexicon: Evidence from continued word associations. In: Pro-
ceedings of the 35th Annual Conference of the Cognitive Science Society. Cognitive
Science Society (2013)

9. De Deyne, S., Perfors, A., Navarro, D.J.: Predicting human similarity judgments
with distributional models: The value of word associations. In: Proceedings of
COLING 2016, the 26th International Conference on Computational Linguistics:
Technical Papers. pp. 1861–1870 (2016). https://doi.org/10.24963/ijcai.2017/671

10. Fernandez, A., Dı́ez, E., Alonso, M.: Normas de asociación libre en castellano
de la universidad de salamanca (2010), http://inico.usal.es/usuarios/gimc/
normas/index_nal.asp

11. Finkelstein, L., Gabrilovich, E., Matias, Y., Rivlin, E., Solan, Z., Wolfman, G.,
Ruppin, E.: Placing search in context: The concept revisited. In: Proceedings of
the 10th International Conference on World Wide Web. pp. 406–414. ACM (2001)

12. Gómez-Adorno, H., Markov, I., Sidorov, G., Posadas-Durán, J., Sanchez-Perez,
M.A., Chanona-Hernandez, L.: Improving feature representation based on a neural
network for author profiling in social media texts. Computational Intelligence and
Neuroscience 2016, 13 pages (2016)

13. Gómez-Adorno, H., Posadas-Durán, J.P., Sidorov, G., Pinto, D.: Document embed-
dings learned on various types of n-grams for cross-topic authorship attribution.
Computing pp. 1–16 (2018)

14. Grover, A., Leskovec, J.: node2vec: Scalable feature learning for networks. In: Pro-
ceedings of the 22nd ACM International Conference on Knowledge Discovery and
Data Mining. pp. 855–864. ACM (2016)

15. Hassan, S., Mihalcea, R.: Cross-lingual semantic relatedness using encyclopedic
knowledge. In: Proceedings of the 2009 Conference on Empirical Methods in Nat-
ural Language Processing: Volume 3-Volume 3. pp. 1192–1201. Association for
Computational Linguistics (2009)

16. Jackson-Maldonado, D., Thal, D., Fenson, L., Marchman, V., Newton, T., Conboy,
B.: Macarthur inventarios del desarrollo de habilidades comunicativas (inventarios):
Users guide and technical manual. Baltimore, MD: Brookes (2003)

17. Kiss, G., Armstrong, C., Milroy, R., Piper, J.: An associative thesaurus of English
and its computer analysis. Edinburgh University Press, Edinburgh (1973)

18. Lafourcade, M.: Making people play for lexical acquisition. In Proceedings of the
th SNLP 2007, Pattaya, Thaland 7, 13–15 (December 2007)

47

Spanish Word Embeddings Learned on WANs 11

19. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word rep-
resentations in vector space. Computing Research Repository arXiv:1301.3781
(2013), https://arxiv.org/abs/1301.3781

20. Miller, G., Charlees, W.: Contextual correlates of semantic sim-
ilarity. Language and cognitive processes 6(1), 1–28 (1991).
https://doi.org/10.1080/01690969108406936

21. Nelson, D.L., McEvoy, C.L., Schreiber, T.A.: Word association rhyme and word
fragment norms. The University of South Florida (1998)

22. Sahlgren, M.: The distributional hypothesis. Italian Journal of Disability Studies
20, 33–53 (2008)

23. Schnabel, T., Labutov, I., Mimno, D., Joachims, T.: Evaluation methods for unsu-
pervised word embeddings. In: Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing. pp. 298–307 (2015)

24. Sinopalnikova, A., Smrz, P.: Word association thesaurus as a resource for extending
semantic networks. pp. 267–273 (2004)

25. Sowa, J.F.: Conceptual graphs as a universal knowledge representa-
tion. Computers & Mathematics with Applications 23(2), 75–93 (1992).
https://doi.org/10.1016/0898-1221(92)90137-7

48

Part IV

Short Papers

49

Semantic Width Revisited (Extended Abstract)

Georg Gottlob1,2, Matthias Lanzinger1, and Reinhard Pichler1

1 TU Wien, Austria,
2 University of Oxford, UK

{gottlob, mlanzing, pichler}@dbai.tuwien.ac.at

1 Introduction

Answering conjunctive queries (CQ) and, equivalently, solving constraint sat-
isfaction problems (CSP), are among the most fundamental tasks in computer
science. While these problems are NP-complete, there has been much success in
identifying “islands of tractability”. In this work, we want to further sharpen the
image of this complexity landscape. In particular, we are interested in extend-
ing the pioneering work by Barceló, Pieris, Romero, and Vardi [1, 2], Dalmau,
Kolaitis, and Vardi [4], and Grohe [6] on the deep connections between query
minimization and structural decompositions. To this end, the following notion
of semantic widths will be the central theme of our work. Note that from now
on, we only concentrate on CQs. Clearly, all results hold for CSPs as well.

Definition 1. Let Q be the class of all conjunctive queries and w : Q → R+ be
some property of the query. We define semantic w as sem-w(q) := inf{w(q′) |
q′ ' q}, where ' denotes homomorphic equivalence.

Such semantic widths can be interpreted as measures of the inherent structural
complexity of the underlying question posed by the query, whereas classical
notions of width express the complexity of a specific way to pose the question.

So far, semantic notions of acyclicity [2], treewidth (tw) [4], and (generalized)
hypertree width (hw and ghw , resp.) [1] have been investigated, while more pow-
erful notions of width such as fractional hypertree width (fhw) [7], submodular
width (subw) [9], and adaptive width (adw) [8] have been left unexplored. The
goal of this work is to study semantic notions also of fhw , adw , and subw . Re-
call that the semantic notions of acyclicity, tw , and ghw can be characterized in
terms of the core of the CQ. This naturally raises the question if such a char-
acterization is also possible for fhw , subw , and adw . We will give an affirmative
answer which, structurally, looks very similar to the previous results. However,
some additional machinery will be needed to prove our new results.

In [9], subw was introduced to provide an in some sense “complete” char-
acterization of the fixed-parameter tractability (FPT) of CQ Evaluation. Our
investigation of the semantic version of subw will provide new input for such an
FPT-characterization. More specifically, our new notion of sem-subw will allow
us to identify an FPT-fragment of CQ Evaluation which is strictly bigger than
the fragment defined via subw in [9].

51

2 G. Gottlob, M. Lanzinger, R. Pichler

Strongly related to the search for (fixed-parameter) tractable fragments of
CQ Evaluation is the complexity of the Check problem which, for given integer
k ≥ 1, is about deciding if a given CQ has width ≤ k. Among the width notions
mentioned above, this problem is tractable for tw and hw and NP-complete for
ghw and fhw . For subw and adw , the complexity is expected to be even higher.
When moving to semantic notions, the computation of the core introduces a
further source of intractability. In case of ghw and fhw , several structural prop-
erties of the hypergraph underlying a CQ have been identified recently [5] to
make the Check problem tractable. We will show that these properties may
also be helpful for the computation of the semantic variants of ghw and fhw .

2 Preliminaries

We assume the reader to be familiar with basic concepts such as conjunctive
queries (CQs) and their associated hypergraphs. We implicitly extend proper-
ties of hypergraphs to CQs through their associated hypergraphs. Due to space
limitations, we refer to [9] for definitions of the fractional cover number (ρ∗),
generalized hypertree width (ghw), fractional hypertree width (fhw), adaptive
width (adw), and submodular width (subw).

We are mainly interested in two computational problems here. The first one
is the usual query evaluation problem for a class of CQs Q, which we denote as
Eval(Q). The decision problem of checking, whether a query has width ≤ k for
width notion w, will be referred to as Check(w, k).

The problem Check(w, k) with w ∈ {ghw , fhw} has been shown NP-complete
even for k = 2 [5]. On the positive side, also tractable fragments of this problem
have been identified in [5] via the following hypergraph properties: for a hyper-
graph H, the c-multi-intersection width of H refers to the maximum cardinality
of an intersection of any c distinct edges. For the special case c = 2, we simply
use the term intersection width. The degree of H is the maximum number of
edges a vertex of H occurs in. The rank of H is the maximum edge size in H.

3 Results

The following theorem is the basis of all our further considerations:

Theorem 1. For every conjunctive query q:
1. sem-ρ∗(q) = ρ∗(Core(q))
2. sem-fhw(q) = fhw(Core(q))
3. sem-adw(q) = adw(Core(q))
4. sem-subw(q) = subw(Core(q))

An interesting consequence of Theorem 1 is that bounded semantic width
of a class Q of CQs, for the notions of width enumerated in the theorem, im-
plies FPT of the Eval(Q) problem when parameterized by the query. This
is due to the fact that core computation only depends on the query (not the

52

Semantic Width Revisited 3

data). This is of particular interest in the case of bounded sem-subw, because
it properly generalizes bounded submodular width, and as such “escapes” the
FPT-characterization theorem of Marx [9]. To see that the generalization is in
fact proper, consider the class of “grid queries” QGn , such that QGn asks if
a given undirected graph contains a grid of size ≥ n. The core of query QGn
simply asks for the existence of a single (undirected) edge. However, the asso-
ciated hypergraphs of the family (QGn)n≥1 include grids of every dimension.
Hence, (QGn)n≥1 has unbounded treewidth. By considering the fractional in-
dependent set where every vertex has weight 1/rank(H), we get the inequality
subw(H) ≥ adw(H) ≥ (tw(H) + 1)/rank(H). It is then clear that QGn has
unbounded subw , which is in sharp contrast to sem-subw(QGn) = 1.

Corollary 1. Let Q be a class of CQs. Then bounded sem-fhw, sem-subw, and
sem-adw are sufficient conditions for the fixed-parameter tractability of Eval(Q)
(parameterized by the query). Furthermore, they properly subsume bounded fhw,
subw, and adw, respectively.

In [5], it was shown that the Check problem of ghw and fhw becomes
tractable if the underlying hypergraphs satisfy certain properties such as bounded
(multi-)intersection width, bounded degree, and/or bounded rank. Note that all
these properties are hereditary in the sense that deletion of vertices and/or edges
from a hypergraph does not destroy these properties. Thus, using Theorem 1, we
can directly identify tractable fragments of Check for sem-ghw and sem-fhw.
We present Corollary 2 as an illustrative example for various similar results.

Corollary 2. For a constant k > 0, let Q be a class of conjunctive queries with
bounded fractional hypertree width and bounded degree, then Check(sem-fhw, k)
is tractable in Q.

There exist classes with bounded fhw but unbounded ghw [7]. However, little
is known about the conditions under which this can occur. We show that for
classes with either bounded degree or bounded intersection width, the properties
of bounded fhw and bounded ghw (and, therefore, also bounded hw) in fact
coincide. Furthermore, since sem-fhw and sem-ghw(cf. [1]) are characterized by
the width of the core, it is easy to generalize the result to the semantic case. As a
direct consequence, the promise algorithm presented by Chen and Dalmau in [3]
can be adapted to classes with bounded sem-fhw and either bounded degree or
bounded intersection width, making evaluation of these classes tractable.

Theorem 2. Let q be a conjunctive query and let its associated hypergraph have
degree d and intersection width i. The following statements hold:

– fhw(q) ≤ ghw(q) ≤ d fhw(q) (Implicit in [5])

– sem-fhw(q) ≤ sem-ghw(q) ≤ d sem-fhw(q)

– fhw(q) ≤ ghw(q) ≤ 2i fhw(q)2 + 2 fhw(q)

– sem-fhw(q) ≤ sem-ghw(q) ≤ 2i sem-fhw(q)2 + 2 sem-fhw(q)

53

4 G. Gottlob, M. Lanzinger, R. Pichler

4 Conclusion

So far, we have given a characterization of the semantic variants of ρ∗, fhw, adw,
and subw. From this we are able to derive new insights into the complexity of
CQs. Figure 1 illustrates our current view of the complexity landscape of CQs.

Many consequences of Theorem 1 are yet to be explored. Of particular in-
terest is the role of sem-subw. Marx has shown that bounded subw characterizes
those hypergraphs for which evaluation of the associated CQs is fixed-parameter
tractable [9]. The natural next step is to characterize precisely those CQs for
which the evaluation is fixed-parameter tractable. Semantic submodular width
is a natural candidate step in this direction but the question whether it provides
a necessary condition for fixed-parameter tractable CQ evaluation remains an
important open problem for future work.

ghw

sem-ghw
sem-fhwBIP

sem-fhwBDP

fhw

subw
adw

sem-fhw

sem-subw
sem-adw

tw, hw
ghwLogBMIP

fhwBDP

Check hard
Eval tractable

Check & Eval tractable

Eval FPT

Fig. 1. CQ Complexity Landscape. Contributions presented in this paper are under-
lined. We write wP to denote a width notion w on classes constrained to a property P
where P is one of bounded degree (BDP), bounded intersection (BIP), or logarithmi-
cally bounded multi-intersection (LogBMIP).

Acknowledgements This work was supported by the Austrian Science Fund
(FWF):P30930-N35.

References

1. Barceló, P., Pieris, A., Romero, M.: Semantic optimization in tractable classes of
conjunctive queries. SIGMOD Rec. 46(2), 5–17 (Sep 2017)

2. Barceló, P., Romero, M., Vardi, M.Y.: Semantic acyclicity on graph databases. SIAM
Journal on Computing 45(4), 1339–1376 (2016)

3. Chen, H., Dalmau, V.: Beyond hypertree width: Decomposition methods without
decompositions. In: Proc. CP 2005. pp. 167–181. Springer (2005)

54

Semantic Width Revisited 5

4. Dalmau, V., Kolaitis, P.G., Vardi, M.Y.: Constraint satisfaction, bounded treewidth,
and finite-variable logics. In: Proc. CP 2002. pp. 310–326. Springer (2002)

5. Fischl, W., Gottlob, G., Pichler, R.: General and fractional hypertree decomposi-
tions: Hard and easy cases. In: Proc. PODS 2018. pp. 17–32. ACM (2018)

6. Grohe, M.: The complexity of homomorphism and constraint satisfaction problems
seen from the other side. Journal of the ACM (JACM) 54(1), 1 (2007)

7. Grohe, M., Marx, D.: Constraint solving via fractional edge covers. ACM Trans.
Algorithms 11(1), 4:1–4:20 (2014)

8. Marx, D.: Tractable structures for constraint satisfaction with truth tables. Theory
of Computing Systems 48(3), 444–464 (2011)

9. Marx, D.: Tractable hypergraph properties for constraint satisfaction and conjunc-
tive queries. Journal of the ACM 60(6), 42 (2013)

55

HyperBench: A Benchmark and Tool for
Hypergraphs and Empirical Findings?

Wolfgang Fischl1, Georg Gottlob1,2, Davide M. Longo1, and Reinhard Pichler1

1 TU Wien, firstname.surname @tuwien.ac.at
2 University of Oxford, georg.gottlob@cs.ox.ac.uk

1 Introduction

Answering Conjunctive Queries (CQs) and solving Constraint Satisfaction Prob-
lems (CSPs) are classical NP-complete problems of high relevance in Computer
Science. Consequently, there has been an intensive search for tractable frag-
ments of these problems over the past decades. We are mainly interested here
in tractable fragments defined via decomposition of the underlying hypergraph
structure of a given CQ or CSP. The most important decomposition methods are
hypertree decompositions (HDs), generalized hypertree decompositions (GHDs),
and fractional hypertree decompositions (FHDs) alongside the corresponding
width notions hypertree width (hw), generalized hypertree width (ghw), and
fractional hypertree width (fhw), respectively.

It has been shown that CQ answering and CSP solving are tractable on every
class of CQs/CSPs, if the underlying hypergraphs have bounded hw(H), ghw(H),
or fhw(H). Since fhw(H) ≤ ghw(H) ≤ hw(H) holds for every hypergraph H,
bounded fhw defines the biggest tractable class of CQ answering and CSP solving.
On the other hand, only for hw , it is feasible in polynomial time to recognize if a
given hypergraph has width ≤ k for fixed k. In contrast, for fhw and ghw , the
problem of recognizing low width is NP-complete even for k = 2 [7].

In [7], the following properties of the underlying hypergraphs have been
identified to ensure tractable computation of GHDs and FHDs of a given width
(if they exist) or at least to allow for a good approximation thereof.

Definition 1. The intersection width iwidth(H) of a hypergraph H is the maxi-
mum cardinality of the intersection e1 ∩ e2 of any two distinct edges e1, e2 of H.
For positive integer c, the c-multi-intersection width c-miwidth(H) of a hypergraph
H is the maximum cardinality of any intersection e1 ∩ · · · ∩ ec of c distinct edges
e1, . . . , ec of H. The degree deg(H) of a hypergraph H is the maximum number
of edges a vertex of H occurs in, i.e., maxv∈V (H)|{e ∈ E(H) | v ∈ e}|.

We say that a class C of hypergraphs has the bounded intersection property
(BIP), the bounded multi-intersection property (BMIP), or the bounded degree
property (BDP) if there exist constants i, c, and d, such that every hypergraph
in C satisfies iwidth(H) ≤ i, c-miwidth(H) ≤ i, or deg(H) ≤ d, respectively.

Indeed, it has been shown in [7] that, if it exists, a GHD of low width can
be computed in PTIME for hypergraphs enjoying the BDP, BIP, or BMIP. For

? This is an extended abstract of [6].

56

FHDs, an exact PTIME algorithm has been presented in case of the BDP; for
the BIP, a polynomial time approximation scheme (PTAS) exists.

Despite the appealing theoretical results, little is known in practice about
these properties and their interplay with the various notions of width. The goal of
this work is to remedy this deficit. More concretely, we investigate questions such
as the following: Do the hypergraphs underlying CQs and CSPs in practice, indeed
have low degree and (multi-)intersection width? Are these properties non-trivial
in the sense that, e.g., low intersection width does not immediately lead to low
hw , ghw , and fhw? We also want to get a better understanding of the relationship
between ghw and hw . In general, only the inequality hw(H) ≤ 3 · ghw(H) + 1 is
known. But do these two notions of width indeed differ by factor 3 in practice?
And do theoretical tractability results (such as tractable GHD computation in
case of the BIP) indeed lead to practically feasible computation?

In order to provide answers to these questions, we have collected a vast amount
of CQs and CSPs from concrete applications as well as randomly generated ones,
and translated them into a uniform hypergraph format. We have successively
performed a series of experiments on these hypergraphs – determining the hw and
ghw , the degree and (multi-)intersection width as well as further metrics relating
to the size such as number of vertices, number of edges, and maximum size of edges.
All the hypergraphs thus collected together with the results of our experiments
are publicly available at http://hyperbench.dbai.tuwien.ac.at/. Below, we give a
summary of these results. Moreover, we note that this benchmark has already been
profitably applied in the experimental evaluation of decomposition algorithms by
other authors [5].

2 Basic Definitions

We assume the reader to be familiar with basic concepts such as CQs and CSPs.
The hypergraph corresponding to a CQ φ is defined as H = (V (H), E(H)), where
the set of vertices is V (H) = variables(φ) and the set of edges is E(H) = {e |
∃A ∈ atoms(φ) : e = variables(A)}. Due to lack of space, we also have to assume
familiarity with the various notions of decompositions and width.

We have already introduced the crucial properties BDP, BIP, and BMIP. By
slight abuse of notation, we shall say in the sequel that a hypergraph H has
BDP = d, BIP = i, or c-BMIP = i, if H satisfies the conditions iwidth(H) = i,
c-miwidth(H) = i, or deg(H) = d, respectively.

3 Results

We have collected 3070 CQs and CSPs from different sources and converted them
into hypergraphs. Our collection of CQs comprises 535 queries used in practical
applications and 500 randomly generated ones using the tool from [11]. The
non-random CQs stem from various sources. Queries in [4] come from a huge
SPARQL repository comprising over 26 million CQs, from which we have included
only the hypergraphs with hw ≥ 2. Queries in [9] come from a big collection of
SQL queries from which we have extracted over 15,000 CQs (in particular, no
nested SELECTs). Again, we have only included hypergraphs with hw ≥ 2 into
our benchmark. The remaining non-random CQs come from different benchmarks

57

such as the Join Order Benchmark (JOB) [10] and TPC-H [12]. Our collection
of 2035 CSPs is composed of 1953 instances from [2] and 82 instances used in
previous analyses [3,8]. The instances from [2] are divided in two classes: 1090 of
them come from applications and the remaining 863 are random instances.

Table 1. Percentage of instances having BDP, BIP, 3-BMIP, 4-BMIP ≤ 5.

BDP BIP 3-BMIP 4-BMIP
(%) (%) (%) (%)

Application-CQs 81.68 100 100 100
Application-CSPs 53.67 99.91 100 100
Random 10.12 76.82 90.17 93.62

In our first experiment, we computed BDP, BIP, 3-BMIP, 4-BMIP for
our collection of hypergraphs. The results are presented in Table 1. We group
our instances in three classes: application-CQs, application-CSPs, and random
instances (both CQs and CSPs). In the first place, we are interested in the
percentage of hypergraphs whose values of BDP, BIP, 3-BMIP, and 4-BMIP are
small. It turned out that all application-CQs have BIP ≤ 5 and yet smaller 3-
BMIP and 4-BMIP. The BDP tends to be bigger, but there are still 81.68% of the
application-CQs with BDP ≤ 5. As for the application-CSPs, the BIP and BMIP
are also small in general, namely 99.91%, 100% and 100% have BIP ≤ 5, 3-BMIP
≤ 5, and 4-BMIP ≤ 5, respectively. Interestingly, the percentage of application-
CSPs with BDP ≤ 5 is rather low (53.67%) compared with application-CQs. The
random instances behave differently. Indeed, we have measured 76.82%, 90.17%
and 93.62% of the random instances (with very similar behaviour of random CQs
and random CSPs) to have small BIP, 3-BMIP, and 4-BMIP, respectively. The
percentage of instances with BDP ≤ 5 even falls more dramatically to 10.12% for
random instances. To conclude, BIP and BMIP indeed tend to be (very) small
for both CQs and CSPs taken from applications and they are still reasonably
small for random instances.

As a next step, we have systematically applied the computation of hw [8] to
our benchmark. The aim of this experiment was to determine the hw or at least
an upper bound thereof for each hypergraph. We have organized the computation
in different rounds, each of which has a different value of k, which is initialized
with k = 1. In each round, we check if hw(H) ≤ k holds and, if so, compute a
concrete HD with this width. If the program ends with a yes-answer, we have an
upper bound on hw . In case of a no-answer, we have a lower bound. No bound
is obtained in case of a timeout (which we set at 3,600 seconds). For all the
instances with no upper bound (i.e., either no-answer or timeout) for a value of
k, we continue with k := k+1 in the next round. We were able to determine that
for all application-CQs hw ≤ 3 holds and to compute concrete HDs of this width.
For 694 of all 1172 application-CSPs (59.22%) we have verified hw ≤ 5. In total,
considering also random instances, 1849 (60.23%) out of 3070 instances have
hw ≤ 5. For 1453 of them, we determined exact hw , for the others we only have
an upper bound and the actual value of hw could be even less. We conclude that

58

for the vast majority of CQs and CSPs (in particular those from applications), hw
is small enough to allow for efficient CQ answering or CSP solving, respectively.

We have also analysed the correlation between all the hypergraph parameters
studied here. BIP and BMIP are obviously highly correlated. More interestingly,
we observe a high correlation between any two of the number of vertices, the
arity (= maximum edge size), and hw . It is worth underlining that BDP, BIP,
3-BMIP, 4-BMIP have low correlation with hypertree width. That is, low values
of these parameters are favourable for GHD computation [7] but they do not
imply that also the hw and (as we will see below) the ghw are particularly small.

Finally, we have implemented several algorithms for GHD-computation, which
exploit low BIP. For all hypergraphs with hw ≤ k and k ∈ {3, 4, 5, 6}, we checked
whether ghw ≤ k− 1 holds. To this end, we ran our algorithms with a timeout of
3,600 seconds. If the timeout does not occur, we say that the instance is “solved”.
We found out that in 98% of the solved cases and 57% of all instances with hw ≤ 6,
hw and ghw have identical values. Actually, we expect that the percentage in case
of the solved case is more significant because the GHD computation algorithms
usually take longer in case of a no-answers, i.e., we conjecture that most of the
unsolved instances also have identical values of hw and ghw .

4 Conclusion

In this work, we have extensively experimented with a big collection of hy-
pergraphs (from both CQs and CSPs). We have thus made several interesting
observations, which have been summarized above. For instance, the discrepancy
between hw and ghw seems to be much smaller in practice than the theoretical
factor 3. Moreover, it has turned out that hypergraph parameters such as BIP,
on the one hand, tend to be very small in practice and, on the other hand, low
BIP is indeed very helpful for computing concrete decompositions – especially
GHDs. This leads us to several directions for future work. Further improvements
of our GHD algorithms and implementations are required to increase the number
of “solved” instances. The development of algorithms exploiting low 3-BMIP or
4-BMIP seems to be a natural next step, since the latter parameters tend to be
yet smaller than BIP. On the more theoretical side, it would be very interesting to
settle the open question if bounded BIP also ensures tractable FHD-computation:
so far, we only know that BIP allows for a PTAS for the fhw .

Acknowledgement

This work was supported by the Austrian Science Fund (FWF) project P30930-
N35. Davide Mario Longo’s work was supported by the Austrian Science Fund
(FWF) project W1255-N23.

References

1. Arocena, P.C., Glavic, B., Ciucanu, R., Miller, R.J.: The ibench integration metadata
generator. Proc. VLDB Endow. 9(3), 108–119 (2015)

59

2. Audemard, G., Boussemart, F., Lecoutre, C., Piette, C.: XCSP3: an XML-based
format designed to represent combinatorial constrained problems. http://xcsp.org

3. Berg, J., Lodha, N., Järvisalo, M., Szeider, S.: Maxsat benchmarks based on
determining generalized hypertree-width. MaxSAT Evaluation 2017 p. 22 (2017)

4. Bonifati, A., Martens, W., Timm, T.: An analytical study of large SPARQL query
logs. PVLDB 11(2), 149–161 (2017)

5. Fichte, J., Hecher, M., Lodha, N., Szeider, S.: An SMT Approach to Fractional
Hypertree Width. Proc. CP 2018, pp.109–127 (2018)

6. Fischl, W., Gottlob, G., Longo, D.M., Pichler, R.: Hyperbench: A benchmark and
tool for hypergraphs and empirical findings. In: PODS 2019 (to appear) (2019)

7. Fischl, W., Gottlob, G., Pichler, R.: General and fractional hypertree decompositions:
Hard and easy cases. In: Proc. PODS 2018. ACM (2018)

8. Gottlob, G., Samer, M.: A backtracking-based algorithm for hypertree decomposi-
tion. ACM Journal of Experimental Algorithmics 13 (2008)

9. Jain, S., Moritz, D., Halperin, D., Howe, B., Lazowska, E.: Sqlshare: Results from
a multi-year sql-as-a-service experiment. In: Proc. SIGMOD 2016. ACM (2016)

10. Leis, V., Radke, B., Gubichev, A., Mirchev, A., Boncz, P., Kemper, A., Neumann,
T.: Query optimization through the looking glass, and what we found running the
join order benchmark. The VLDB Journal (2017).

11. Pottinger, R., Halevy, A.: MiniCon: A scalable algorithm for answering queries
using views. The VLDB Journal 10(2-3), 182–198 (Sep 2001)

12. Transaction Processing Performance Council (TPC): TPC-H decision support
benchmark. http://www.tpc.org/tpch/default.asp (2014)

60

Parallel Computation of
Generalized Hypertree Decompositions?

Georg Gottlob,1,2 Cem Okulmus,1 and Reinhard Pichler1

1TU Wien, Austria, 2University of Oxford, UK

1 Introduction

Answering Conjunctive Queries (CQs) and solving Constraint Satisfaction Prob-
lems (CSPs) are arguably among the most important tasks in Computer Science.
They are classical NP-complete problems. However, they have tractable frag-
ments for instances where the underlying hypergraphs are acyclic. There has
been active research for several decades to generalize acyclicity with several no-
tions of decompositions and width [4]. Here we focus on generalized hypertree
decompositions (GHDs) and generalized hypertree width (ghw).

Deciding if a given CQ or CSP (strictly speaking, the underlying hypergraph
H) has ghw ≤ k is NP-complete even for k = 2 [3]. However, it was also shown
in [3] that the problem of deciding if a given hypergraph has ghw(H) ≤ k
becomes tractable for fixed k under realistic restrictions. One such restriction
is the Bounded Intersection Property (BIP): a hypergraph H has intersection
width ≤ i (denoted as iwidth(H) ≤ i), if the intersection of any two edges in H
has at most i vertices. A class of hypergraphs satisfies the BIP, if there exists a
constant i, such that every hypergraph H ∈ C has iwidth(H) ≤ i.

In [2], three different algorithms for checking ghw(H) ≤ k (and, if so, com-
puting a concrete GHD of width ≤ k) were implemented and tested on the Hy-
perBench benchmark [2] comprising over 3,000 hypergraphs derived from CQs
and CSPs from various sources. All the algorithms thus implemented rely on
the observation that hypergraphs of CQs or CSPs stemming from applications
tend to have low iwidth. These GHD-computations were purely sequential, even
though one of the algorithms seems to lend itself naturally to parallel processing:
more precisely, this GHD-algorithm is based on so-called “balanced separators”;
at each step of the top-down construction of a GHD, this algorithm searches
for a set of at most k edges {e1, . . . , ek} (= a “balanced separator”), such that
the vertex set e1 ∪ · · · ∪ ek splits the hypergraph into components whose size
(measured in terms of the edges that intersect with each component) is at most
half the size of the component processed by the parent node in the GHD.

Given that many of the experiments reported in [2] had high run times or
were even stopped due to a time out (with default value 3,600 seconds), we
have to look for a different computation strategy. The goal of this work is to
provide a parallel computation of GHDs and to move the GHD-computation to
a powerful cluster. To this end, we adopt the aforementioned GHD-algorithm
? This work was supported by the Austrian Science Fund (FWF):P30930-N35.

61

based on balanced separators (referred to as “b-seps”, for short, in the sequel)
and implement it in the Go programming language [1]. Developed at Google
in 2009, it has already seen widespread use by a number of companies such as
Dropbox, CloudFare, Netflix and by Google itself.

Below, we describe the challenges that we have faced in designing a parallel
implementation of the b-seps approach:

– Finding a good design of the main targets for parallelization, namely the
search for the next balanced separator and the recursive calls of the GHD-
computation for the resulting components;

– Finding a way to partition the work space equally among CPUs;
– Designing parallel search to support efficient backtracking;
– Splitting resources equally among the search space during recursive calls;
– Introducing subedges of the edges in the given hypergraph (which is needed to

exploit the low iwidth(H)) while avoiding unneeded combinatorial explosion.

Below, we summarize how we have dealt with the above challenges and we
report on first, promising experimental results. We will show that the parallel ap-
proach is indeed able to significantly speed up the expensive GHD-computations
and that it allowed us to solve some cases which were out of reach with the
previous, purely sequential GHD-implementations in [2].

2 Preliminaries

We assume the reader to be familiar with basic notions such as conjunctive
queries (CQs) and their corresponding hypergraphs. A GHD of a hypergraph
H = (V (H), E(H)) is a tuple 〈T, χ, λ〉 where T = (N,E(T)) is a tree, and χ and
λ are labelling functions, which map to each node n ∈ N two sets, χ(n) ⊆ V (H)
and λ(n) ⊆ E(H). We denote with B(λ(n)) the set {v ∈ V (H) | v ∈ e, e ∈ λ(n)}.
The functions χ and λ have to satisfy the following conditions:

1. For each edge e ∈ E(H) there exists a node n ∈ N such that e ⊆ χ(n).
2. For each vertex v ∈ V (H), {n ∈ N | v ∈ χ(n)} is a connected subtree of T .
3. For each node n ∈ N , we have that χ(n) ⊆ B(λ(n)).

The width of a GHD (ghw) is the size of the largest label for λ. It was shown
in [2] that for a class of hypergraphs enjoying the BIP, one can add polynomially
many subedges of edges in E(H) to ensure B(λ(n)) = χ(n) for every n ∈ N .

For a set of edges S ⊆ E(H), we say two vertices v1, v2 ∈ V (H) are [S]-
connected if there is a path of edges e1, . . . , en ∈ E(H)\S such that v1 ∈ e1 and
v2 ∈ en and for each pair in the path ei, ei+1, i ≤ n − 1 we have that ei and
ei+1 share a common vertex. We define an [S]-component to be a maximal set of
[S]-connected vertices. The size of an [S]-component C is defined as the number
of edges e ∈ E(H) such that e ∩ C 6= ∅. For a hypergraph H and a set of edges
S ⊆ E(H), we say that S is a balanced separator (b-sep) if all [S]-components
of H have a size of |E(H)|

2 or less .

62

graph sequential parallel speedup
Dubois-016.xml.hg 668.097 ms 45.39 ms 14.71
rand-25-10-25-87-24.xml.hg 5936.83 ms 879.99 ms 7.84
Nonogram-012-table.xml.hg 73976.08 ms 11057.68 ms 6.69
Pi-20-10-20-30-17.xml.hg 1439.71 ms 200.54 ms 7.17

Table 1. Running times of b-seps algorithm for width 3.

It was shown in [2] that, for every GHD 〈T, χ, λ〉 of a hypergraph H, there
exists a node n ∈ N such that λ(n) is a balanced separator of H. This property
can be made use of when searching for a GHD of size k of a hypergraph H: if
no such separator exists, then clearly there can be no GHD of H of width k.

3 Results

The Go programming language [1] has a model of concurrency that is based on
Hoare’s Communicating Sequential Processes [5]. The smallest concurrent unit
of computation is called a “goroutine”, essentially a light-weight thread.

For the b-seps algorithm, we looked at two key areas of parallelization: the
search for b-seps and the recursive calls. For the search, while testing out a
number of configurations, we settled ultimately on using two types of goroutines:
A number of workers, spawned via a central master goroutine, which starts them
and waits on exactly two conditions (whichever happens first): either one of the
workers finds a b-sep, or none of them do and they all terminate on their own.
In the first case it makes sure all workers terminate and continues the main
computation. For the recursive calls, we so far only spawn a single goroutine
for each of them and wait for each call to return its result (a GHD of the
corresponding subhypergraph).

To split the work equally among the workers during the search, a simple
work balancer (each worker receiving jobs from the central master goroutine)
would address this nicely. However, we found that this introduces a considerable
synchronization delay when compared with splitting up the work beforehand. We
assume here that the choice of edges has only small influence on the time needed
to check if they form a b-sep. Thus we split the search space of size M =

(
N
k

)
by

the number of workers W (and if there is some remainder, we simply increase
the workload of the first (M mod W) workers by 1). Each worker has its own
iterator, thus minimizing the need for communication during the search.

Our algorithm must support backtracking, i.e., restarting the search and
finding another solution (if it exists). If we do not keep track carefully where
each worker left off when the parallel search halted earlier, we could be forced
to repeat work. We address this by saving the above mentioned iterators, used
by each worker, in the main thread so as to reuse them during backtracking.

Another challenge lies in parallelizing the recursive calls in such a way that
the resources (CPU cores) are split among them, to reduce unnecessary synchro-

63

width 2 width 3 width 4

3.4

3.6

3.8

4

4.2

4.4

4.6

M
ed

ia
n
Sp

ee
du

p

Figure 1. Median speedups for CSP Application instances from [3]

nization delays and not focus too much on one branch of the search tree. We
have not yet found a satisfactory solution for this. One idea would be to go back
to load balancing, and see if it helps with parallelizing the recursive calls, at the
cost of taking away resources from the parallel search of b-seps.

The algorithm needs to compute subedges and consider them as possible
choices for b-seps, as it would otherwise not be complete. The first and obvious
choice is to add all possible subedges in the beginning (adding them globally).
This leads to a combinatorial explosion, and more crucially also leads to many
useless combinations, such as considering multiple subedges from the same orig-
inal edge at once. We address this by adopting the local subedge variant from [3]
and making it more restricted by first finding a balanced separator among the
“original” edges of E(H), and if this leads to a reject case, considering subedge
variants of its edges. We also make sure not to repeat the same subedges by
caching the vertex sets that generate them.

We used our parallel implementation to look at further instances that can
be determined negatively (proving that no GHD of a certain width can exist) or
positively (actually producing a GHD of that width). Our test setup was a cluster
with 11 machines, each with two 12-core Intel Xeon CPU E5-2650 v4, clocked
at 2.20GHz. For the tests, each job ran exclusively on a machine spawning up
to 24 goroutines.

Possible speedups of four sample hypergraphs from HyberBench when com-
pared to a sequential execution1 are showcased in Table 1, where speedup is
simply the sequential time divided by the parallel one. Furthermore, when com-
paring the execution times of the purely sequential version with parallelizing
both the search for b-seps and parallelizing the recursive calls, we observe an
increase in speedups at higher widths, seen in Figure 1. Additionally, we could
produce new results for some previously unsolved instances of the HyperBench
benchmark, thus determining their exact ghw . We are positive that with further
1 ’Sequential execution’ here refers to running the same general algorithm, but rewrit-
ten so that it does not use any goroutines. This version therefore only uses a single
CPU core.

64

improvements, we will be able to “fill out the blank spots” on many hypergraphs
of the HyperBench benchmark from [2] and in the process produce a more robust
tool to compute GHDs.

4 Outlook

This paper is about work in progress. The next step will be to incorporate
further optimizations into our Go implementation such as the following: (1)
Applying various heuristics for ordering the hyperedges (to find b-seps faster),
(2) caching of previous computations, and (3) looking at hybrid solutions which
first apply the recursive splitting into subproblems via the b-seps approach and
then (for sufficiently small subproblems) switch to one of the other (sequential)
GHD-algorithms in [2]. The ultimate goal is, at least for all hypergraphs in the
HyperBench benchmark where an upper bound on ghw of at most 6 is known
(i.e., slightly more than 1,500 instances), to be able to compute the precise value
of ghw . Currently, for about half of these instances, the exact ghw is still open.

References

1. Golang.org (Feb 2019), https://golang.org/
2. Fischl, W., Gottlob, G., Longo, D.M., Pichler, R.: Hyperbench: A benchmark and

tool for hypergraphs and empirical findings. In: PODS 2019 (to appear) (2019)
3. Fischl, W., Gottlob, G., Pichler, R.: General and fractional hypertree decomposi-

tions: Hard and easy cases. In: Proc. PODS 2018. pp. 17–32 (2018)
4. Gottlob, G., Greco, G., Leone, N., Scarcello, F.: Hypertree decompositions: Ques-

tions and answers. In: Proc. PODS 2016. pp. 57–74 (2016)
5. Hoare, C.A.R.: Communicating sequential processes. Commun. ACM 21(8), 666–

677 (1978)

65

An Empirical Analysis of
GraphQL API Schemas in Open

Code Repositories and Package Registries

Yun Wan Kim1, Mariano P. Consens1, and Olaf Hartig2

1 University of Toronto, Canada
timyun.kim@mail.utoronto.ca consens@mie.utoronto.ca

2 Linköping University, Sweden
olaf.hartig@liu.se

Abstract. GraphQL is a query language for APIs that has been increas-
ingly adopted by Web developers since its specification was open sourced
in 2015. The GraphQL framework lets API clients tailor data requests
by using queries that return JSON objects described using GraphQL
Schema. We present initial results of an exploratory empirical study with
the goal of characterizing GraphQL Schemas in open code repositories
and package registries. Our first approach identifies over 20 thousand
GraphQL-related projects in publicly accessible repositories hosted by
GitHub. Our second, and complementary, approach uses package reg-
istries to find over 37 thousand dependent packages and repositories. In
addition, over 2 thousand schema files were loaded into the GraphQL-JS
reference implementation to conduct a detailed analysis of the schema in-
formation. Our study provides insights into the usage of different schema
constructs, the number of distinct types and the most popular types in
schemas, as well as the presence of cycles in schemas.

1 Motivation and Approach

The schema of a GraphQL API describes the data and the types of queries
supported by the API. An empirical study of the GraphQL schemas used by open
source projects, therefore, provides useful information about the characteristics
of data interfaces. Currently, there is no comprehensive collection of such schemas
or a tool that helps gather schemas from GraphQL APIs. The goal of the work
presented in this paper is i) to establish a method to extract schemas into a single
collection for analyses and ii) to conduct an empirical analysis of the schemas.

1.1 Data Collection Method

APIs-guru has the most comprehensive list of public GraphQL APIs with links
to endpoints and their documentation. By using APIs-guru, combined with man-
ual effort through keyword searching, we collected 67 schemas of distinct APIs.
Authentication requirements for most publicly available APIs hindered the effi-
ciency and possible automation of schema extraction. Hence, we decided to take
a different approach by extracting schemas from open source repositories from
GitHub and used three sources to identify GraphQL repositories.

66

2 Y. Kim et al.

GitHub API As of June, 2018, there were more than 20,000 repositories on
GitHub matching the keyword “graphql” and 2,000 repositories matching the
keywords “graphql api”.

Libraries.io API Decan et al. [1] explored security vulnerabilities of NPM pack-
ages that were dependent on vulnerable packages. Following a similar method,
we identified over 37,000 repositories dependent on GraphQL reference imple-
mentations.

GHTorrent Archived data of GHTorrent is hosted on Google’s Big Query plat-
form. We identified over 5,000 repositories matching the keyword “graphql”.

Table 1. Summary of GraphQL
repositories identified.

Method NumRepositories

GitHub API 20,635
Libraries.io API 37,588

GHTorrent 5,188

Table 2. Number of dependent repositories
for the most popular implementations.

Package language Count

NPM/graphql JavaScript 12,700
Pypi/graphene Python 310

Rubygems/graphql Ruby 470

By using string search for schema for every repository file’s full file-path, it
was possible to identify exact path of potential schema files and their repository
data. Our assumption is that this method returns a considerable portion of
actual schemas available such that this portion is representative for the entire
population of GraphQL schemas publicly availables. We found that schema files
are most often named schema.json, schema.js, and schema.graphql for single-file
schemas. For modular schemas, the files are most often separated by types,
queries, mutations, and subscriptions but are contained in directories with the
name schema or schemas.

After downloading all potential schema files, we tried to load each of them
via GraphQL-JS. A successful attempt indicated a valid schema and a failure
indicated an invalid schema or an irrelevant file. We identified duplicates through
several methods including Levenshtein distance and cosine similarity.

2 Analysis Results

We identified a total of 2,777 valid but non-distinct schemas using the proposed
method. 1,880 files were unique JSON-formatted schemas. We also conducted
an exhaustive search excluding the “schema” keyword on all GraphQL-related
repositories to collect a larger list of 3,949 schemas. The union of the two methods
resulted in 4,095 schemas and, by using cosine similarity to filter duplicates, 2,081
schemas were unique. Figure 1 illustrates the number of schemas per source and
the overlap of sources. This illustration shows that the different approaches to
collect GraphQL schemas are non-redundant.

67

An Empirical Analysis of GraphQL API Schemas 3

Fig. 1. Number of schemas by sources. Fig. 2. Number of cycles per schema.

To estimate our recall, we downloaded all .json and .graphql files from all
repositories found with the keyword “graphql”. By using the 3,949 valid schema
counts, the estimated recall of our method is ca. 70% and the precision is 1.8%.

There are five major components of GraphQL schemas that describes the
supported operations: Query, Object, Mutation, Subscription, and Directive.
While every GraphQL server needs to support queries, which fetch information
about data objects, other operations are not necessarily required. Only about
20% of the schemas have the Subscription type that can push information, while
about 70% have the Mutation type via which the stored data can be changed.

Table 3. Number of non-empty
components in the 2,081 schemas.

Schema components Frequency

object types 2,079
query type 2,079
directives 2,059

mutation type 1,440
subscription type 414

Table 4. The ten most common object types.

Object type Frequency

Node 1,009
PageInfo 922

User 879
UserConnection 336

UserEdge 307
BatchPayload 220

Viewer 215
UserPreviousValues 190

Post 182

Object types dictate what information is exchanged between the users and
the servers. We find that even after excluding scalar types and type definitions
such as Query and Mutation, the most common types are generic types affiliated
with reference implementations as shown in Table 4. Node is a reserved interface
type for reference implementations such as Apollo and Relay with an identifier
field and is the most common.

We traversed each schema in its JSON format recursively to identify their
levels of nesting. We find that the median number of levels is 9 and the median
number of levels only considering object types is 6. Excluding introspection and
scalar type definitions, most schemas have only one level of nesting.

3 Cycles in GraphQL Schemas

Another interesting question is whether the relationships between the types in
the schemas form directed cycles, because only if such cycles exist, the data

68

4 Y. Kim et al.

exposed via a GraphQL API may contain directed cycles and these, in turn,
may cause an undesired overhead during query processing [2].

Hence, we analyze GraphQL schemas as directed graphs. The vertices in such
a graph for a given schema correspond to the object types, the interface types,
and the union types in the schema. For every field definition whose value type is
based on one such type, the graph contains an edge from the vertex that repre-
sents the type in which the field definition appears to the vertex that represents
the value type of the field definition. Additionally, there are edges from interface
types to their implementing object types and, similarly, from union types to
their participating object types. In this paper we focus only on simple cycles;
that is directed cycles in which repetition of vertices is not allowed.

For the analysis we use a program3 that loads a schema, generates the cor-
responding graph representation of this schema, and then enumerates the sim-
ple cycles in the generated graph. For the latter step, the program applies a
combination of Johnson’s algorithm [3] to enumerate the cycles and Tarjan’s
algorithm [4] to first divide the graph into its strongly connected components,
which is a prerequisite of Johnson’s algorithm. To run the program for each of
the 2,094 schemas we use an ordinary desktop computer with 8 GB of RAM.

We find that 832 of the 2,094 schemas (39.7%) contain at least one simple
cycle. For a more detailed analysis of these cycles we can, unfortunately, focus
only on 788 of the 832 schemas; the other 44 schemas contain so many simple
cycles (at least 10M in each of them) that enumerating these cycles causes the
program to crash with an out-of-memory exception.

The distribution of the number of cycles in the remaining 788 schemas is
illustrated in Figure 2. As can be observed, the distribution resembles a power
law. In more detail, 2 schemas contain more than 100K cycles (that is 0.3% of
the 788 schemas), where the maximum is 256,348 cycles; 9 schemas contain more
than 10K cycles (that is 1.1%); 41 schemas contain more than 1K cycles (5.2%);
73 contain more than 100 cycles (9.3%); 152 contain at least 10 cycles (19.3%),
and 543 contain more than one cycle (68.9%). Hence, 31.1% contain exactly one
cycle only.

Moreover, the average length of all cycles within each schema ranges from 2.0
to 20.5, but there is no correlation between this average length and the number
of cycles. Similarly, we do not find a correlation between the number of cycles
and the number of vertices or edges.

4 Concluding Remarks

This preliminary report describes our approach to collect and analyze thousands
of GraphQL schemas from open project repositories. Initial descriptive and struc-
tural properties of the collected schemas were presented. The collection has also
enabled additional analysis (not included in this contribution) such as temporal
characteristics of repository commits and co-committer relationships.

3 https://github.com/LiUGraphQL/graphql-schema-cycles

69

An Empirical Analysis of GraphQL API Schemas 5

Acknowledgements. The authors thank Jonas Lind and Kieron Soames who,
as part of their thesis project at Linköping University, have developed the cycle
enumeration program and applied it to our collection of schemas. Olaf Hartig’s
work on this paper has been funded by the CENIIT program at Linköping
University (project no. 17.05).

References

1. Decan, A., Mens, T., Constantinou, E.: On the impact of security vulnerabilities
in the npm package dependency network. In: Proceedings of the 15th Interna-
tional Conference on Mining Software Repositories. pp. 181–191. MSR ’18 (2018),
http://doi.acm.org/10.1145/3196398.3196401

2. Hartig, O., Pérez, J.: Semantics and Complexity of GraphQL. In: Proceedings of
the 2018 World Wide Web Conference. pp. 1155–1164. WWW ’18, Republic and
Canton of Geneva, Switzerland (2018), https://doi.org/10.1145/3178876.3186014

3. Johnson, D.B.: Finding all the elementary circuits of a directed graph.
SIAM J. Comput. 4(1), 77–84 (1975). https://doi.org/10.1137/0204007,
https://doi.org/10.1137/0204007

4. Tarjan, R.E.: Depth-first search and linear graph algorithms. SIAM J. Comput.
1(2), 146–160 (1972), https://doi.org/10.1137/0201010

70

Querying APIs with SPARQL

Matthieu Mosser, Fernando Pieressa, Juan Reutter,
Adrián Soto, Domagoj Vrgoč

Pontificia Universidad Católica de Chile

Abstract. Although the amount of RDF data has been steadily increas-
ing over the years, the majority of information on the Web is still residing
in other formats, and is often not accessible to Semantic Web services.
A lot of this data is available through APIs serving JSON documents. In
this work we propose a way of extending SPARQL with the option to con-
sume JSON APIs and integrate the obtained information into SPARQL
query answers. Looking to evaluate these queries as efficiently as possible
we present an algorithm that produces “worst-case optimal” query plans
that reduce the number of requests as much as possible. We also do a set
of experiments that empirically confirm the optimality of our approach.

1 Introduction

The Semantic Web provides a platform for publishing data on the Web via the
Resource Description Framework (RDF). Having a common format for data dis-
semination allows applications to access data obtained from different sources.
However, the majority of the data available on the Web today is still not pub-
lished as RDF, which makes it difficult to connect it to Semantic Web services.
A huge amount of this data is made available through Web APIs which use a
variety of different formats to provide data to the users.

We think that is important to make all of this data available to Semantic Web
technologies, in order to create a truly connected Web. We propose an extension
of SPARQL that allows us to connect to Web APIs, extending query answers
with data obtained from a Web Service, in real time and without any setup.

With the ability of querying endpoints and APIs in real time we face an even
more challenging task: How do we evaluate such queries? Connecting to APIs
poses an interesting new problem from a database perspective, as the bottleneck
shifts from disk access to the amount of API calls. Hence, to evaluate these
queries efficiently we need to understand how to produce a query plan for them
that minimizes the number of calls to the API.
Work supported by Millennium Institute for Foundational Research
on Data (IMFD), Chile. This work was presented in ESWC 2018. [7]

2 SERVICE-to-API Queries

We extended the SERVICE operator to allow SPARQL to query Web APIs. We
call a query that uses this extended SERVICE a SERVICE-to-API query. We as-
sume the reader is familiar with the syntax and semantics of SPARQL 1.1 query

71

language [6]. We concentrate on the so-called REST Web APIs, which communi-
cate via HTTP requests,assuming that all API responses are JSON documents.
To illustrate how our extension works we will use the following example:

Example 1. We find ourselves in Scotland in order to do some hiking. We obtain
a list of all Scottish mountains using the WikiData SPARQL endpoint, but we
would prefer to hike in a place that is sunny. This information is not in WikiData,
but is available through a weather service API called weather.api. This API
implements HTTP requests, so for example to retrieve the weather on Ben Nevis,
the highest mountain in the UK, we can issue a GET request with the IRI:

http://weather.api/request?q=Ben_Nevis

The API responds with a JSON document containing weather information,
say of the form

{"timestamp": "24/10/2017 11:59:07", "temperature": 3,

"description": "clear sky", "coord": {"lat": 56.79, "long": -5.02}}

Therefore, to obtain all Scottish mountains with a favourable weather all we
need to do is call the API for each mountain on our list, keeping only those
records where the weather condition is "clear sky". One can do this manually,
but this quickly become cumbersome, particularly when the number of API calls
is large. Instead, we propose to extend the functionality of SPARQL SERVICE,
allowing it to communicate with JSON APIs such as the weather service above.
For our example we can use the following (extended) query:

SELECT ?x ?l WHERE {

?x wdt:instanceOf wd:mountain . ?x wdt:locatedIn wd:Scotland .

?x rdfs:label ?l .

SERVICE <http://weather.api/request?q={?l}>{(["description"]) AS (?d)}

FILTER (?d = "clear sky")

}

The first part of our query is meant to retrieve the IRI and label of the moun-
tain in WikiData. The extended SERVICE operator then takes the (instantiated)
URI template where the variable ?l is replaced with the label of the mountain,
and upon executing the API call processes the received JSON document using
an expression ["description"], which extracts from this document the value
under the key description, and binds it to the variable ?d. Finally, we filter
out those locations with undesirable weather conditions. ut

We proposed a way to implement the overloaded SERVICE operation on top
of any existing SPARQL engine. To do so, we partition each query using this
operator into smaller pieces, and evaluate these using the original engine when-
ever possible. The answers given by the engine are extended with the results
provided by the APIs. A full specification can be found in [7].

But can we optimize this queries? We discover that for SERVICE-to-API
queries the bottleneck are the API calls. This is mostly because HTTP requests
are slower that disk access and its something that we cannot control. So if we
want to evaluate queries as efficiently as possible we need to do the least amount
of API calls as possible. Then, can we reformulate query plans to make sure we
are making as few calls as possible?

2

72

3 A Worst-case optimal algorithm

What we did is to propose an algorithm that is optimal in the worst case. This
algorithm does not make more calls than the number we would need in the worst
case over all graphs and APIs of a given size. For matters of space we will not
explain all the algorithm and the proofs. The details can be found in [7].

Our algorithm is inspired by the optimal plan exhibited in [1,5] for conjunc-
tive queries. To illustrate it, consider the SERVICE-to-API query of the exam-
ple1. Note that the query is formed of basic graph patterns and a SERVICE-to-
API pattern. We treat each basic graph pattern as a relation and each SERVICE-
to-API as a relation with access methods (see e.g. [2,4]).

Then we can think that a SERVICE-to-API query has the form Q = R1 |><|

R2 |><| . . . |><| Rm. For the sake of presentation we consider that Rj (1 ≤ j ≤ m)
can represent a basic graph pattern or a SERVICE-to-API pattern where its
attributes are the variables of the basic graph pattern or the input and output
variables of the API. Then, let A1, . . . , An be an enumeration of all attributes
(variables of SPARQL) involved in Q, in order of their appearance. Starting from
Q, we construct a query Q∗ = ∆n, where the sequence ∆1, . . . ,∆n is defined as:

∆1 = πA1(R1) |><| . . . |><| πA1(Rm).

∆i = ∆i−1 |><| πA1,...,Ai
(R1) |><| . . . |><| πA1,...,Ai

(Rm).

The idea is to process the query variable by variable. First we obtain the
result of the intersection of all A1 from the BGPs, and then we extend such
BGPs with the values obtained from APIs where their input is the attribute
A1. Then we resolve the join for BGPs with variables A1 and A2 (considering
the results of the previous iteration) and we extend the results with the output
of the APIs with inputs A1 and A2. We continue this process until answer the
query.

Our main result is the following. Take any SERVICE-to-API query Q, and
a database D. Denote by MQ,D the maximum size of the projection of any
relation appearing in Q over a single attribute in the database D. Furthermore,
let 2ρ

∗(Q,D) be the AGM bound [1] of the query Q over D, i.e. the maximum
size of the output of Q over any relational database having the same number of
tuples in each relation as D. Then we can prove the following:
Theorem 1. Any feasible join query under access methods Q can be evaluated
over any database instance D using a number of calls in

O(MQ,D × 2ρ
∗(Q,D)).

4 Experiments

We wanted to give empirical evidence that the worst-case optimal algorithm of
Section 3 is indeed a superior evaluation strategy for executing queries that use
API calls. To construct a benchmark for SERVICE-to-API patterns we reformu-
late the queries from the Berlin benchmark [3] by designating certain patterns
in a query to act as an API call.

3

73

Algorithms. We consider three algorithms for SERVICE-to-API patterns: (1)
Vanilla, a naive implementation without optimization; (2) Without duplicates,
the base algorithm that uses caching to avoid doing the same API twice; and
(3) WCO, the worst-case optimal algorithm of Section 3.
Results. The number of API calls done for each of the three versions of our
algorithm are shown in Table 1. As we see, avoiding duplicate calls reduces the
number of calls to some extent, but the best results are obtained when we use
the worst-case optimal algorithm. We also measured the total time taken for the
evaluation of these queries. Query times range from over 8000 seconds to just
0.7 seconds for the Vanilla version, and in average the use of WCO reduces by
40% the running times of the queries.

Q1 Q2 Q3 Q4 Q5 Q7 Q8 Q10 Q12 AVG

Vanilla 5332 77 5000 5066 2254 15 1 7 1 0%

W/O Duplicates 4990 3 4990 4990 608 15 1 7 1 20%

WCO 2971 0 3284 4571 608 13 0 0 1 53%
Table 1. The number of API call per query for each algorithm. WCO plans average
53% reduction in API calls.

5 Conclusion

In this paper we propose a way to allow SPARQL queries to connect to HTTP
APIs returning JSON. We give an intuition of the syntax and the semantics of
this extension, discuss how it can be implemented on top of existing SPARQL
engines, show an sketch of a worst-case optimal algorithm for processing these
queries, and show the usefulness of this algorithm in practice. In future work,
we plan to support formats other than JSON, and explore how to support it in
public endpoints.

References

1. A. Atserias, M. Grohe, and D. Marx. Size bounds and query plans for relational
joins. SIAM J. Comput., 42(4):1737–1767, 2013.

2. M. Benedikt, J. Leblay, and E. Tsamoura. Querying with access patterns and
integrity constraints. PVLDB, 8(6):690–701, 2015.

3. C. Bizer and A. Schultz. The berlin SPARQL benchmark. Int. J. Semantic Web
Inf. Syst., 5(2):1–24, 2009.

4. A. Cal̀ı and D. Martinenghi. Querying data under access limitations. In ICDE 2008,
pages 50–59, 2008.

5. M. Grohe. Bounds and algorithms for joins via fractional edge covers. In In Search
of Elegance in the Theory and Practice of Computation. Springer, 2013.

6. S. Harris and A. Seaborne. SPARQL 1.1 query language. W3C, 2013.
7. M. Mosser, F. Pieressa, J. L. Reutter, A. Soto, and D. Vrgoc. Querying apis with

SPARQL: language and worst-case optimal algorithms. In ESWC 2018, pages 639–
654, 2018.

4

74

On Directly Mapping Relational Databases to
Property Graphs

Radu Stoica1, George Fletcher1, and Juan F. Sequeda2

1 Eindhoven University of Technology, the Netherlands
{r.a.stoica@student., g.h.l.fletcher@}tue.nl

2 Capsenta, Austin, Texas, USA
juan@capsenta.com

Abstract. Much of the data found in practice resides in relational DBs.
However, many contemporary analytical tasks are performed on graphs.
Property graphs are currently one of the most prevalent data models
for graph data management in industry. Therefore, a key challenge is to
understand the fundamental relationships between relational databases
and property graph databases. This paper reports our ongoing work
towards understanding these relationships by proposing R2PG-DM, a
direct mapping of relational databases to property graphs. Given a re-
lational database schema and instance, a direct mapping generates a
corresponding property graph instance. The semantics of our mapping
is defined using Datalog. Our work is inspired by existing approaches
for direct mappings of relational databases into earlier graph data mod-
els. Future work is to study our mapping with respect to fundamental
properties such as information and query preservation.

1 Introduction

A major class of contemporary data analytics focuses on gaining insights from the
rich complex patterns found in graph-structured data collections such as social,
communication, financial, biological, and mobility networks [1]. For example,
investigative journalists have recently found, through graph analytics, surprising
social relationships between executives of companies within the Offshore Leaks
financial social network data set, linking company officers and their companies
registered in the Bahamas.3 Property graphs (PG) are currently one of the most
prevalent data models for the management of such data in industry [1]. A PG
is an edge- and node-labeled directed multigraph where both edges and nodes
have associated sets of properties, i.e., key-value pairs.

The Offshore Leaks PG was constructed as a mapping from relational database
(RDB) sources.4 Indeed, much of the data found in practice resides in RDBs.
Therefore, a key challenge is to understand the fundamental relationships be-
tween RDBs and PGs. A crucial first step in exploratory graph analytics on

3 International Consortium of Investigative Journalists. https://offshoreleaks.icij.org/
4

https://www.icij.org/blog/2013/06/how-we-built-offshore-leaks-database/

75

2 R. Stoica et al.

RDBs is to transform the database into a PG. Only then can the basic graph
structure be explored and new relationships discovered using contemporary graph
database systems.

This motivates the study of direct mappings from RDBs to PGs. A direct
mapping is a transformation from RDBs to PGs which (1) is domain and schema-
independent, i.e., works regardless of the source database schema and instance,
and (2) transforms the content of the source instance into a target instance, i.e.,
given a RDB instance generates a corresponding PG instance.

State of the art. Most approaches to graph analytics over relational data
extract graphs as user-specified views on relational data, e.g., [3,8]. This requires,
however, that the user already fully understands the desired graph view, which
is overly restrictive in the common case of exploratory graph analytics.

The study of direct mappings from relational to property graphs is not as
well-developed. Of the small handful of approaches, the focus has been on opti-
mized layout for efficient query processing or mappings which are lossy or obfus-
cate the input RDB schema [4,5,7,9]. Furthermore, all current direct mappings
are defined procedurally (i.e., defined with pseudo-code), making it difficult to
formally reason about their correctness and other basic properties.

Our contributions. In this short note, we report on our work-in-progress on
R2PG-DM, a declarative direct mapping from RDB to PG. R2PG-DM losslessly
transforms both the source instance and schema while also intuitively preserving
the original structure of the input RDB. Our work is inspired by the approach of
Sequeda et al. to direct mappings from relational to RDF graphs, the W3C stan-
dard for sharing graph-structured data on the web [6]. We present R2PG-DM by
example and outline the basic research questions we are currently investigating
in our study of the connections between RDB and PG.

2 RDBs, PGs, and direct mappings
Let D be an enumerable set of data values containing the special value null, and
let A be an enumerable set of attribute names containing the special attribute
tid. An RDB schema is a triple S = (R, att,Σ), where R is a finite set of relation
names, att is a function assigning to each r ∈ R a finite set att(r) ⊆ A \ {tid},
and Σ is a finite set of primary and foreign keys over R and att.5 For r ∈ R, an
r-tuple is a function t : att(r) ∪ {tid} → D such that t(tid) 6= null. An instance I
of S is an assignment to each r ∈ R of a finite set I(r) of r-tuples satisfying Σ,
such that for distinct t, t′ ∈ ⋃

r∈R I(r) it holds that t(tid) 6= t′(tid). An example
schema and instance is given in Figure 1 (top left).

A property graph is a structure (V,E, e, `, p) where V is a finite set of vertices,
E is a finite set of edges, e is a function assigning an ordered pair of vertices
to each edge (i.e., the source and target vertices of the edge, resp.), ` assigns a
finite set of labels to each vertex and edge (from some domain of labels), and
p assigns a finite set of key-value pairs to each vertex and edge. An example
property graph is given in Figure 1 (bottom left).

5
https://en.wikipedia.org/wiki/Foreign_key

76

On Directly Mapping Relational Databases to Property Graphs 3

Fig. 1. (top left) An RDB (S, I), where primary key attributes are underlined, partnerA
and partnerB of Partners are foreign keys to name of Person, and location of Partners is
a foreign key to cname of City. (bottom left) The property graph R2PG-DM(S, I) and
(right) its representation with predicates V ertex, Edge, and Property.

Let PG denote the set of all PGs and RDB denote the set of all pairs (S, I)
where S is an RDB schema and I is an instance of S. A direct mapping is a total
function from RDB to PG.

3 The R2PG-DM direct mapping
We next informally present R2PG-DM, a direct mapping which addresses the
shortcomings of current solutions discussed in Section 1. With R2PG-DM, RDB
relations are interpreted as classes of “things” (i.e., labeled vertices) and foreign-
key relationships are interpreted as edges between these things. In particular:

– each input r-tuple t is represented in the output graph by a vertex v (iden-
tified by t(tid)), which is labeled with r, the name of the relation to which t
belongs; furthermore, v has key-value pair (a, t(a)), for each a ∈ att(r).

– for each foreign key relationship f ∈ Σ (from, say, relation r to relation
s), for each pair of tuples t ∈ I(r) and t′ ∈ I(s) participating in f , this
relationship is represented by an edge with label r-s from vertex vt to vertex
vt′ , representing t and t′, respectively.

77

4 R. Stoica et al.

Similarly, as there currently does not exist a standard PG schema language,
the input schema is also fully represented in the output PG, e.g., each relation
and each attribute of a relation is represented by a vertex, and foreign keys are
represented by edges between the relevant attributes of relations, etc. Figure 1
illustrates an RDB database (S, I) and PG translation R2PG-DM(S, I). We omit
here the translation of S to PG, and only illustrate the translation of I.

Clearly, each component of the R2PG-DM mapping can be specified by a
declarative non-recursive Datalog query [2] over the source DB represented using
a fixed set of predicates (see Section 4.1 “Storing relational databases” of Sequeda
et al. [6]), with the target PG represented by three predicates V ertex, Edge, and
Property capturing the vertices, edges, and the key-value properties associated
with vertices and edges, respectively. This is illustrated in Figure 1 (right).

4 Ongoing research
Our ongoing work proceeds along three lines. First, we are proceeding with a
formal study of R2PG-DM, establishing basic properties such as information and
query preservation [6]; we hypothesize that R2PG-DM generates a graph that is
isomorphic as a graph generated by the direct mapping of [6]. Moreover, we are
studying how to extend R2PG-DM in order to generate a graph with properties
on edges, taking full advantage of the data model. Second, we are developing
practical tools for efficient and scalable R2PG-DM, to be made available as
open source code. Third, we aim to extend the R2PG-DM approach to support
customized mappings for the cases where there is a schema defined on the target
instance (e.g., mapping the relational schema S to an equivalent PG schema).
This builds upon ongoing efforts towards standards for PG schema languages.6

References
1. Angela Bonifati, George Fletcher, Hannes Voigt, Nikolay Yakovets. Querying

Graphs. Morgan & Claypool, 2018.
2. Todd J. Green et al. Datalog and recursive query processing. Foundations and

Trends in Databases 5(2):105-195, 2013.
3. Mohamed S. Hassan et al. Extending in-memory relational database engines with

native graph support. In EDBT 2018, pages 25-36.
4. Ognjen Orel, Slaven Zakošek, Mirta Baranović. Property oriented relational-to-

graph database conversion. Automatika 57(3): 836-845, 2016.
5. Subhesh Pradhan, Sharma Chakravarthy, Aditya Telang. Modeling relational data

as graphs for mining. In COMAD 2009.
6. Juan F. Sequeda, Marcelo Arenas, Daniel P. Miranker. On directly mapping rela-

tional databases to RDF and OWL. In WWW 2012, pages 649-658.
7. Roberto De Virgilio, Antonio Maccioni, Riccardo Torlone. R2G: a tool for migrating

relations to graphs. In EDBT 2014, pages 640-643.
8. Konstantinos Xirogiannopoulos, Amol Deshpande. Extracting and analyzing hidden

graphs from relational databases. In SIGMOD 2017, pages 897-912.
9. Kang Min Yoo, Sungchan Park, Sang-Goo Lee. RDB2Graph: a generic framework

for modeling relational databases as graphs. In JIST 2014, pages 148-151.

6
https://www.w3.org/Data/events/data-ws-2019/

78

Linear Recursion in G-CORE

Valentina Urzua and Claudio Gutierrez

Department of Computer Science, Universidad de Chile and IMFD.

Abstract. G-CORE is a query language with two key characteristics: It
is closed under graphs and incoporates paths as first-class citizens. Cur-
rently G-CORE does not have recursion. In this paper we propose this
extension and show how to code classical polynomial graph algorithms
with it.

Keywords: G-CORE, Recursion, Graph Query Language

1 Introduction

G-CORE is a graph database query language designed by a working group be-
longing to the Linked Data Benchmark Council [1]. One of its most novel features
is the ability to express paths as first-class citizens. However, path queries are
still not enough to express a wide variety of ”natural” queries, particularly clas-
sical graph algorithms like topological sort, BFS, Eulerian circuit, etc.

We propose to extend G-CORE with (linear) recursive functionalities by
introducing a syntax and a semantics that essentially follow the ideas of similar
constructs in SQL and SPARQL1. What is more novel is that we take the core
basic polynomial algorithms in graph theory and show, first, that they cannot
be coded in standard G-CORE; and second, how to write queries that code
them in G-CORE extended with linear recursion. Finally, we tested the code
in an evaluator for G-CORE that is being developed by Roberto Garćıa at the
University of Talca.

Basic Notions. A Path Property Graph (PPG) is an edge and node labeled
graph where edges and nodes additionally have property-value pairs. In addition,
a PPG may also have a collection of paths, where a path is a concatenation of
existing, adjacent, edges in the graph.

A basic G-CORE query is an expression of the form:

CONSTRUCT f MATCH γ ON G WHERE ξ (1)

where f is a full construct pattern, γ is a full graph pattern and ξ a Boolean con-
dition [2]. The core of a G-CORE query consists in the complete graph pattern
γ that defines the content of the MATCH clause. The MATCH clause is evaluated
against the PPG G and returns a set of bindings that are filtered with the WHERE
clause, to finally build a new PPG H with the CONSTRUCT clause.

1 Ongoing research

79

2 Valentina Urzua and Claudio Gutierrez

Related Work. Adding recursion to database query languages has been ex-
tensively studied both from a theoretical [3] as well as from a practical point
of view (e.g. SQL, SPARQL [4, 5]). In SQL it was included in the SQL-99 stan-
dard and was developed via common table expressions (CTE'S) that have a base
SELECT statement and a recursive SELECT statement, that allows to express
graph queries like DFS, BFS, topological sort, connected components, etc. Since
queries must be linear and many interesting queries are not [6], optimizations
have been proposed in [7, 8] (r-sql proposal) that allow only linear recursion and
not the explicit negation that is a limitation when implementing recursion [3].

The graph algorithms BFS and DFS were implemented in [9] with the recur-
sive SQL operator, where only trees were allowed as input since otherwise the
query would loop infinitely. The topological order was studied in [10], making a
BFS starting from the node whose outdegree is zero. In the case of the connected
components it is shown in [11] how to obtain them adding recursion.

For SPARQL, Reutter et al [5] proposed a recursion operator based on SQL
and make a comparison with property paths. In their study they formalize the
syntax of the recursive operator and develop algorithms for evaluating it in
practical scenarios. Also, a comparative study of the expressiveness of property
paths and the recursive SQL operator was made in [6].

2 Adding a Recursive Operator to G-CORE

Among the main issues when adding recursion to query languages are the com-
plexity of the evaluation, the expressiveness and the efforts to keep the declar-
ative character of queries. From a theoretical point of view, recursive operators
are based on the theory of least fixed points [3], that is, the increasing accu-
mulation of results until eventually the evaluation does not add anything else
and stops. Our proposal follows these ideas and is based both on the recursive
SPARQL operator defined by Reutter et al [5] and the recursive SQL operator
[4].

Proposed Syntax of linear recursive queries.

WITH RECURSIVE t AS { qbase UNION qrec } qout, (2)

where t is a temporary PPG, qbase is a usual G-CORE query, qrec is a positive G-
CORE query that can use the temporary graph t and qout a recursive G-CORE
query itself.

Semantics of recursive queries. First, recall that the queries qbase and qrec are
usual G-CORE queries, therefore, are of the form (1). Second, recall that the
evaluation of a usual query of the form (1) against a PPG G outputs a binding
table M(G), and from it the CONSTRUCT clause returns the PPG consisting of
the union of f(`) for each ` ∈ M(G). In what follows we will denote by Mb

the binding table and by Cb(`) the PPG returned by the CONSTRUCT clause of
over the row ` of Mb of the base query qbase. Similarly we denote Cr and Mr

respectively for the query qrec.

80

Linear Recursion in G-CORE 3

Proposed Semantics of linear recursive queries. Let q be a recursive G-CORE
query (like (2)) and G be a PPG. The answer ans(q,G) of the query corresponds
to the least fixed point of the sequence given by:

G0 = G, G−1 = ∅,
Gi+1 = Gi ∪ {ans(qrec, G+ (Gi −Gi−1))},

where: (1) the difference (Gi−Gi−1) is similar to the G-CORE difference operator
defined in [2], except that the difference of the sets of nodes is redefined as
(Ni\Ni−1) ∪ {a ∈ Ni−1 : a is adjacent in Gi to a node in Ni\Ni−1}; and (2)
the semantics of ans(q,G + H) means the match of q can use G or H or both
(note that ans(q,G ∪H) would not the same).

The answer ans(q,G) of the recursive G-CORE query q over G is given by
the following procedure:

Algorithm 1 Computing the answer of a recursive query in G-CORE

Data: PPG G, Queue of PPG'S Q = ∅, PPG t = ∅
for each row l of the binding table Mb(G) do

Insert(Cb(l), Q)

while Q 6= ∅ do
Set r ← Extract(Q)
t← t ∪ r
for each row l of the binding table Mr(G + r) do

Insert(Cr(l), Q)

return ans(qout, t + G)

The idea is simple: first with the base query we construct the base case. Then
with the recursive query we recursively construct a temporary graph which codes
the solution that the output query will use.

Thus, first we begin with the queue Q empty and the temporary graph t
empty. Then we evaluate the matching clause of qbase and for each row of the
produced binding table Mb(G), insert Cb(l) into Q. Then we enter the while loop.
As long as Q 6= ∅, we extract the top element of Q and update the temporary
graph with it. Then for each row ` of the binding table Mr(G+r) obtained from
the query qrec against G+r (recall that this means that it could use the original
graph G as well as the recently obtained graph r), we insert into the queue Q
the new results obtained by the recursive construct Cr(l). When we exhaust the
queue Q the temporary graph t is finally ready to be used, and the query qout is
evaluated against t+G. If qout is a standard G-CORE query the process outputs
the result. If qout is a recursive G-CORE query, we proceed as before again.

Notice that the fixed point exists whenever the query is monotone. On the
form of query definition in (2) and tis semantics restricts queries to be linear
[3–5, 11], that is, you can consult only the new elements added to t.

81

4 Valentina Urzua and Claudio Gutierrez

3 An Example: Topological Sort

In graph theory there are problems that have been widely studied and can be
solved recursively in polynomial time. Due to space restriction, we will show as
an example how the case of topological sort can be coded in recursive G-CORE.

Fig. 1. A PPG G that represents hierarchy of a company

The classic algorithm to obtain the topological sort given an acyclic directed
graph is Kahn algorithm (1962). It is not difficult to see that topological sort
cannot be expressed in G-CORE. The next query illustrates with the graph of
Fig. 1 how to code topological sort in G-CORE:

WITH RECURSIVE t AS (

CONSTRUCT (n) SET n.depth :=0,

MATCH (n) ON G,

WHERE NOT EXISTS (CONSTRUCT (y),

MATCH (n)-[:BossOf]->(y) ON G)

UNION{

CONSTRUCT (x) SET x.depth:=n.depth+1,

MATCH (x) ON G,

(n) ON t

WHERE EXISTS (CONSTRUCT (x),

MATCH (x)-[:BossOf]->(n) ON G)}

SELECT z.id,

MATCH (z) ON t,

ORDER BY MAX(z.depth) DESC

The above query first looks for those nodes which have no outgoing edges (base
case) and are assigned with depth equal to 0 as a property. Then the recursive
case comes and the nodes which have out edges to the nodes of the base case are
added with property depth equal to 1 and so on until all the nodes in G have
been added. Finally, we order by depth and we take the maximum value of the
property depth.

82

Linear Recursion in G-CORE 5

References

1. LBDC. http://ldbcouncil.org/.
2. Renzo Angles, Marcelo Arenas, Pablo Barceló, Peter Boncz, George Fletcher,

Claudio Gutierrez, Tobias Lindaaker, Marcus Paradies, Stefan Plantikow, Juan
Sequeda, Oskar Van, Alex Averbuch, Hassan Chaa, Irini Fundulaki, Alastair
Green, Josep Lluis, Larriba Pey, Jan Michels, Raquel Pau, Arnau Prat, Tomer
Sagi, and Yinglong Xia. G-CORE A Core for Future Graph query Languages
Designed by the LDBC Graph query Language Task Force *. In: SIGMOD, 2017.

3. Richard Hull Serge Abiteboul and Victor Vianu. Foundations of Databases.
Addison-Wesley, 1995.

4. Jim Melton and Alan R Simon. SQL: 1999-Understanding Relational Language
Components. Morgan Kaufmann, 2001.

5. Juan L. Reutter, Adrián Soto, and Domagoj Vrgoč. Recursion in SPARQL.
pages 19–35, Berlin, Heidelberg, 2015. Springer-Verlag.

6. N Yakovets, P Godfrey, and J Gryz. Evaluation of SPARQL property paths via
recursive SQL. CEUR Workshop Proceedings, 1087, 01 2013.

7. Gabriel Aranda, Susana Nieva, Fernando Sáenz-Pérez, and Jaime
Sánchez-Hernández. Formalizing a broader recursion coverage in SQL. pages
93–108, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

8. Carlos Ordonez. Optimization of linear recursive queries in SQL. IEEE
Transactions on Knowledge and Data Engineering, 22, 2010.

9. Devin W. Homan. Transitive Closure in SQL.
http://dwhoman.com/blog/sql-transitive-closure.html.

10. FusionBox. Graph Algorithms in a Database .
https://www.fusionbox.com/blog/detail/graph-algorithms-in-a-database-
recursive-ctes-and-topological-sort-with-postgres/620/.

11. Torsten Grust. Advanced SQL. https://db.inf.uni-
tuebingen.de/staticfiles/teaching/ss17/advanced-sql/slides/advanced-sql-05.pdf.

83

Towards Reconciling Certain Answers and
SPARQL: Bag Semantics to the Rescue??

Sebastian Skritek

TU Wien, skritek@dbai.tuwien.ac.at

1 Introduction

Despite the intention of RDF, the data model for the Semantic Web, to sup-
port reasoning about RDF data (as witnessed e.g. by three different semantics
for RDF – simple/RDF/RDFS entailment – or accompanying standards like
OWL), SPARQL, the standardized query language for RDF, lacks some support
of including such reasoning into query answering, as was noted e.g. in [6, 1].

One major cause of this is that SPARQL only makes partially use of cer-
tain answers, which are the semantics commonly applied in reasoning scenarios.
While not fully supporting certain answers might be a reasonable decision when
looking at the costs of evaluating and (for a user) understanding a query, it
negatively affects the power of SPARQL. As a result, in recent years suggestions
have been made how to cover different aspects of reasoning about RDF data (e.g.
blank nodes under RDF simple entailment [6]; OWL reasoning [1]) in SPARQL
by adopting a certain answer semantics.

However, as observed in [1], just applying the usual definition of certain
answers to SPARQL can, in certain cases, be unnecessarily restrictive. To better
illustrate these situations, let us first recall the definition of certain answers.

Given an RDF graph G (possibly extended by some additional information),
most reasoning formalisms define the semantics of G in terms of an (infinite) set
models(G) of RDF graphs implied by G. Query answering in such a setting is
then commonly defined in terms of the certain answer semantic: for a query Q,
the certain answers certain(Q,G) (w.r.t. some reasoning formalism) are

certain(Q,G) =
⋂
G′∈models(G)Q(G′),

where Q(G′) denotes the result of evaluating Q over the RDF graph G′.
While this definition can be immediately applied to SPARQL queries, prob-

lems arise e.g. when looking at the OPTIONAL operator, or more precisely at the
weakly monotone classes of SPARQL queries, like the well-designed queries [10].

Example 1. Consider the SPARQL query Q

SELECT ?auth, ?award WHERE {?auth writes ?b} OPTIONAL {?b receives ?award}
and an RDF graph G = {(a, writes, b)}. Assuming that models(G) contains all
supersets of G (like e.g. under the RDF simple semantics), certain(Q,G) = ∅.
? This work was supported by the Austrian Science Fund (FWF): P30930-N35

84

2 S. Skritek

Given that (a, writes, b) ∈ G′ for every G′ ∈ models(G), this is an unintu-
itive result. However, the mapping µ = {(?auth, a)} is no certain answer be-
cause it is not part of Q(G′) for every G′ ∈ models(G). For example, take
G′ = G ∪ {(b, receives, p)}. Then Q(G′) = {{(?auth, a), (?award, p)}}.

What makes this situation unintuitive is that while µ /∈ Q(G′), an extension
of µ is contained in Q(G′). In fact, weakly monotone queries are exactly those
queries Q where for all pairs of RDF graphs G ⊆ G′ the result Q(G′) contains a
not necessarily proper extension of every mapping in Q(G) [3].

To account for this, based on the notion of subsumption (a mapping µ′ sub-
sumes a mapping µ if µ′ extends µ), an alternative certain answer semantics was
proposed in [1]. One challenge in devising such a semantics is to avoid introducing
unjustified subsumed mappings to the certain answers.

Example 2. Consider the query Q from Example 1 and let the RDF graph G1 be
the RDF graph G′ from Example 1. Assuming models(G1) to contain all super-
sets of G1, one would expect certain(Q,G1) = {{(?auth, a), (?award, p)}}, while
there is no justification for {(?auth, a)} ∈ certain(Q,G1). However, for G2 =
G1 ∪ {(a, writes, c)}, intuitively certain(Q,G2) = {{(?auth, a), (?award, p)},
{(?auth, a)}}. This is because, unlike for G1, over each graph in models(G2) at
least two different mappings contribute a solution, namely {(?auth, a), (?b, b),
(?award, p)} and {(?auth, a), (?b, c)}. However, due to projection, these two
mappings may lead to the same solution: for G3 = G2∪{(c, receives, p)} we get
(under set semantics) Q(G1) = Q(G3). Under bag semantics, Q(G1) and Q(G3)
still contain the same mapping, but it occurs once in Q(G1) and twice in Q(G3).

As a result, these two cases cannot be distinguished under set semantics, which
prevents a definition of certain answers that acknowledges the differences be-
tween these cases. In [1] this was resolved by excluding all subsumed mappings
from the certain answers. E.g., in the above example, {(?auth, a), (?award, p)}
would be the only certain answer for both, G1 and G2. While being a sensible
definition, it is nevertheless a little ad hoc.

Given recent advances in SPARQL query answering and reasoning under bag
semantics (cf. [6, 9, 2, 4, 5]), in this ongoing work we are revisiting the definition of
a certain answer semantics for SPARQL under bag semantics, with the final goal
to devise a certain answer semantics that (more) adequately describes the certain
information returned by weakly monotone queries. This submission does not
present new results, but suggests a possible certain answer semantics, (hopefully)
showcasing that revisiting certain answer semantics for SPARQL is worthwhile.

2 Subsumption between Bags

A possible way of defining a certain answer semantics that faithfully includes sub-
sumed mappings is to introduce a “subsumption-aware” variant of bag-intersection.

Towards this goal, we fix some notation. A mapping µ is a set of pairs (?xi, vi),
each pair denoting µ(?xi) = vi. A bag M of mappings is a collection of mappings

85

Reconciling Certain Answers and SPARQL using Bag Semantics 3

that may contain each mapping more than once. We write cardM (µ) to denote
the number of times a mapping µ occurs in bag M (if clear, M may be dropped;
if we do not specify cardM (µ), we assume 1 by default). In this submission, we
will assume RDF graphs to be sets, while we assume query results to be bags of
mappings, a setting sometimes referred to as set-bag semantics in the literature.

Having settled this, we first have to extend the notion of subsumption to
bags. For sets L, R of mappings, subsumption L v R holds when for every
mapping µ ∈ L there exists a mapping µ′ ∈ R such that µ ⊆ µ′. Similar to
homomorphisms (cf. [7]), there are several possibilities for extending subsump-
tion to bags L,R of mappings: one could just apply the definition for sets, or one
could demand that for every mapping µ ∈ L there exists µ′ ∈ R such that µ ⊆ µ′

and cardL(µ) ≤ cardR(µ′). While it would be interesting to study the effects of
these definitions, for our purpose they are too weak. For example, they cannot
resolve the situation described in Example 2: under both defintions, Q(G1) and
Q(G2) would subsume each other. Thus a subsumption based definition of cer-
tain answers could not distinguish Q(G1) from Q(G2), despite our intention that
certain(Q,G2) = Q(G2), but not Q(G1).

We thus use a stricter definition for subsumption between bags, and say that a
bag L is subsumed by a bag R, written L vb R, if there exists a mapping h : L→
R such that µ v h(µ) for all µ ∈ L and cardR(µ′) ≥∑

µ∈L : h(µ)=µ′ cardL(µ) for

all µ′ ∈ R (this corresponds to the additive homomorphisms in [7]).
Next, we say that a bag M of mappings is vb maximal w.r.t. a property Ω if

M satisfies Ω and there is no M ′ satisfying Ω such that M vM ′ but M ′ 6vM .
It is an interesting observation at this point that sets M1 6= M2 of mappings

may satisfy M1 vM2 and M2 vM1 (just consider the mappings in Example 2),
while (for bags or sets) B1 vb B2 and B2 vb B1 implies B1 = B2.

The notion of vb-maximal bags now allows us to define L∩v R, a version of
bag-intersection that retrieves maximal information from both, L and R: for two
bags L, R of mappings, let L ∩v R be a vb-maximal bag M such that M vb L
and M vb R. Unfortunately, the result of this operator is not necessarily unique.

Example 3. Let L = {{(x, 1), (y, 1), (u, 1)}, {(v, 1)}} andR = {{(x, 1), (y, 1), (v, 1)},
{(u, 1)}} be two bags of mappings. Then M1 = {{(x, 1), (y, 1)}} and M2 =
{{(u, 1)}, {(v, 1)}} are both vb-maximal w.r.t. being subsumed by L and R.

However, we will discuss next that in many cases ∩v, or a slight adaption of it,
is nevertheless well-suited to define meaningful certain answers.

3 Certain Answers via ∩v

Besides not returning a unique bag, another property of ∩v needs to be taken
care of before it can be used to define certain answers, as illustrated next.

Example 4. Consider a SPARQL query Q

SELECT ?a, ?w, ?r WHERE {?a isa author} OPTIONAL {?a writes ?w.?a reads ?r}
and an RDF graph G = {(a, isa, author), (a, reads, b)}. Assume that also the

86

4 S. Skritek

knowledge “every author writes some book” (expressed e.g. in OWL) is given and
that every RDF graph G′ ∈ models(G) satisfies this condition. Then

⋂
v{q(G′) |

G′ ∈ models(G)} = {{(?a, a), (?r, b)}}.
However, this result does not respect the requirement expressed in the query that
a result should contain either a value for both, ?w and ?r, or neither of them. As
a result, instead of defining certain answers just as

⋂
v{q(G′) | G′ ∈ models(G)},

following [1], we also restrict the possible domains for the certain answers. For
a set V of sets of variables, we therefore extend L ∩v R to L ∩Vv R as being the
vb-maximal bag M such that M vb L, M vb R, and dom(µ) ∈ V for all µ ∈M .

Finally, for a query Q, let the admissible solution domains adsoldom(Q) be
the set of possible domains of mappings inQ(G) (for anyG). Due to space restric-
tions we stick to this vague definition; but, for example, for conjunctive queries
Q, adsoldom(Q) contains as single element the set of all output variables of Q,
for query Q from Example 2 we get adsoldom(Q) = {{?auth}, {?auth, ?award}},
and for Q from Example 4, adsoldom(Q) = {{?a}, {?a, ?w, ?r}}.

Definition 1. Let G be an RDF graph, Q a query, and models(G′) the set of
graphs entailed by G. Then the certain answers of Q are defined as

certain(Q,G) =
⋂adsoldom(Q)

v {Q(G′) | G′ ∈ models(G)}.

While, for arbitrary inputs L,R,V, the result of L ∩Vv R is not necessarily
unique, in most of the settings in which we compute certain answers, L, R, and
V are not arbitrary inputs but adhere to some structure that we can exploit.

For example, when applied to conjunctive queries, ∩Vv reduces to conventional
(set- or bag) intersection, and as a result for these queries we get the “classical”
definition of certain answers as a special case of Definition 1.

Similarly, in the special case of models(G) containing a minimal element G
(i.e. G ⊆ G′ for all G′ ∈ models(G)), for weakly monotone SPARQL queries the
certain answers are uniquely defined. In fact, applied to the settings in Exam-
ples 1 and 2 it produces exactly the intuitive bags of certain answers.

More generally, also for the sets models(G) that exhibit a canonical model
(i.e. that contain some G′ ∈ models(G) such that for every Gi ∈ models(G) there
exists some homomorphism hi : G

′ → Gi) we strongly conjecture that for weakly
monotone queries, and especially for well-designed SPARQL queries, Definition 1
gives a unique bag of certain answers.

There are, of course, a lot of open question for future and ongoing work.
These include the relationship to certain answer semantics from the literature
(e.g., while “typical” certain answers for CQs are a special case of Definition 1,
this seems not to be the case for the definition in [1]), an investigation of classes
that provide a unique bag of certain answers, and of course the costs/complexity
of query evaluation under this semantics for specific reasoning formalisms (e.g.
OWL). Another line of research is to establish a connection with the work in [8].
Finally, also considering alterations of this definition could be of interest.

87

Reconciling Certain Answers and SPARQL using Bag Semantics 5

References

1. Ahmetaj, S., Fischl, W., Pichler, R., Simkus, M., Skritek, S.: Towards reconciling
SPARQL and certain answers. In: Proc. WWW 2015. pp. 23–33. ACM (2015)

2. Angles, R., Gutiérrez, C.: The multiset semantics of SPARQL patterns. In: Proc.
ISWC 2016. LNCS, vol. 9981, pp. 20–36. Springer (2016)

3. Arenas, M., Pérez, J.: Querying semantic web data with SPARQL. In: Proc. PODS
2011. pp. 305–316. ACM (2011)

4. Console, M., Guagliardo, P., Libkin, L.: Approximations and refinements of certain
answers via many-valued logics. In: Principles of Knowledge Representation and
Reasoning: Proceedings of the Fifteenth International Conference, KR 2016, Cape
Town, South Africa, April 25-29, 2016. pp. 349–358. AAAI Press (2016)

5. Console, M., Guagliardo, P., Libkin, L.: On querying incomplete information in
databases under bag semantics. In: Proc. IJCAI 2017. pp. 993–999. ijcai.org (2017)

6. Hernández, D., Gutierrez, C., Hogan, A.: Certain answers for SPARQL with blank
nodes. In: Proc. ISWC 2018. LNCS, vol. 11136, pp. 337–353. Springer (2018)

7. Hernich, A., Kolaitis, P.G.: Foundations of information integration under bag se-
mantics. In: Proc. LICS 2017. pp. 1–12. IEEE Computer Society (2017)

8. Libkin, L.: Certain answers as objects and knowledge. vol. 232, pp. 1–19 (2016)
9. Nikolaou, C., Kostylev, E.V., Konstantinidis, G., Kaminski, M., Grau, B.C., Hor-

rocks, I.: The bag semantics of ontology-based data access. In: Proc. IJCAI 2017.
pp. 1224–1230. ijcai.org (2017)

10. Pérez, J., Arenas, M., Gutiérrez, C.: Semantics and complexity of SPARQL. ACM
Trans. Database Syst. 34(3), 16:1–16:45 (2009)

88

Anomaly Detection in Public Procurements using the
Open Contracting Data Standard

Elisabeth Kehler1 , Julio Paciello2 and Juan Pane3

1 Universidad Nacional de Asunción, Paraguay, maelikehler@gmail.com
2 Universidad Nacional de Asunción, Paraguay, julio.paciello@pol.una.py

3 Universidad Nacional de Asunción, Paraguay, jpane@pol.una.py

Abstract. Public procurement typically presents a potential source of
corruption. For this reason, the detection of anomalies in public procurements
can improve the quality of purchases, and consequently enable a better quality
of life in the country through the correct use of public funds. In this paper, we
use as a case study the public contracts of Paraguay, which are in the open data
format of the Open Contracting Data Standard (OCDS), for training an
unsupervised learning model for anomaly detection, based on the Isolation
Forest algorithm. The resulting classification allows to obtain a measurement or
scoring of contracts that can be used to identify outliers. Given a local dataset
of cases of procurement processes with protests with judgments in favor of the
protestant or with citizen complaints, the preliminary results show that the
trained model classifies as anomalous more than 45% of the potentially
anomalous dataset. A detailed validation considering the public procurements
local regulations is needed, with the purpose of building a tool that allows an
intelligent sampling of contracts with atypical behavior to review, applicable to
Paraguay and other countries that implement the OCDS.

Keywords: Open Contracting Data Standard, Open data, Anomaly detection,
Unsupervised learning, Artificial Intelligence.

1 Introduction

Transparency is an important tool to avoid corruption and is essential in a process of
public procurements. The Open Contracting Data Standard (OCDS) [1] is a tool that
helps to implement the transparency needed and provides the possibility of analyzing
the data on a machine learning level. This work uses the publicly available data of the
public procurements of Paraguay as a case study. The Public Procurements Office
(DNCP) publishes since 2010 contracts in the OCDS open data format. The total
number of contracts published by the DNCP since 2010 to 2019 amounts to 311,782.

Anomalies detection in public contracts is especially important in order to find,
prevent and take actions of possibly misappropriated funds. These funds can then be
redirected to areas with an important social impact, such as education or public health
care. The regulatory analysis of the conformity of public procurement processes
according to the local legislation is performed manually by a team of public officials
of the DNCP, analyzing each procurement process separately. Given the volume of
public contracts that are managed annually and the manual work of public officials to
perform this task, it is possible to clearly notice that an exhaustive control of all

89

2

contracts is not feasible. In addition to the control carried out by the DNCP team,
there are also journalistic publications on cases identified as possible frauds.
However, journalistic investigations focus mostly on contracts that are potentially
more striking for public opinion, which represent a small portion of the total.

Considering the public procurements as a potential source of corruption, and
therefore a way for the misuse of the public funds, performing regulatory control to
ensure that the processes are aligned with the local legislation represents an important
task for a country. In Paraguay, to date, this analysis is done manually by specialized
staff of the DNCP. They determine the classification of the data according to the local
laws [8] and also considering known fraud schemes, as for example the Red Flags
scheme [9]. So, the main problem is that having an ever growing amount of data, a
proportional growing number of staff members to analyze the data is required. The
use of the OCDS format makes it possible to apply Machine Learning techniques, as
unsupervised learning, for anomaly detections of possible outliers to the expected
behavior, serving the DNCP as an automated tool for implementing a smart sampling
of procurement processes that can require an in-depth verification. In this work, this
problem is addressed by proposing the automation of control tasks in a first instance,
which allows the DNCP staff to obtain a smartly selected sample of relevant
procurement processes for manual review.

The work is organized as follows, in section II the State of Art is mentioned, in
section III we explain the proposed solution and in section IV we present the
preliminary results and final discussion.

2 State of Art of anomaly detection techniques

Conti and Naldi in [4] present an statistical anomaly detection approach in
procurement auctions using an average bid based method evaluating with the
detection probability and the false alarm probability. Vaserhelyi and Issa illustrate
K-Means Clustering applied to a labeled refund transactions dataset in [5]. Deng and
Mei combine Self-Organizing Map (SOM) and K-Means Clustering for an
unsupervised approach to detecting Fraudulent Financial Statements in [6]. Panigrahi,
Kundu, Sural and Majumdar propose a fusion approach for credit card fraud detection
using a rule-based filter, a Dempster-Shafer adder and a Bayesian Lerner in [7].

As we can appreciate there are multiple previous works that address the anomaly
detection in certain stages of public procurements, and also in financial transactions.
This work proposes to implement a tool that focuses on all stages of public
procurement, during the call for bids, the award and contracts, and contract
modifications specifically in the format of the OCDS. This approach also differs from
the mentioned state of art by applying unsupervised isolation forests to determine the
anomaly score of the data points.

Isolation Forest [2, 3] creates a forest of binary trees by randomly selecting a
feature and also randomly selecting the split value at each node. The anomaly score is
obtained by getting the length of the path to the data point in the isolation tree. It was

90

3

chosen for its independence to distance and density, especially because the data sets
are high-dimensional, and for its good computational performance.

3 Proposed Solution

The semi-structured version of the data in the OCDS format allows for the
implementation of algorithms to analyze it. The goal is to train a unsupervised
learning model that separates anomalies from the data for their consequent human
analysis to determine if a fraud is taking place.

As seen in Figure 1, first the data had to be cleaned, considering human errors
when loading the data. Then a feature selection is done, selecting the variables based
on three criteria: a) if the variable has data (is not empty), b) if the data is structured
(E.g. no free text or links to text), and c) if the data is part of the local regulations for
the procurement process. For an algorithm to be able to analyze the data efficiently,
the data needs to be converted to numerical values, in this approach hashing and
binary vectors are used to perform these tasks. The data is divided into 3 datasets, a)
data in the planning and tender stages of the procurement process, b) contracts, and c)
contracts modifications. Finally the data was normalized for use as an input to the
algorithm.

Fig. 1. Work flow of the proposed solution.

After training the model and getting the anomaly score for the input data, the
DNCP provided to this work a dataset containing potentially anomalous procurement
processes from 2010 onwards, in order to obtain a preliminary validation of the
effectiveness of the classification model. The dataset includes potentially anomalous
procurement processes with protests with judgments in favor of the protestant or with
citizen complaints. Protests are internal disputes in the procurement process whereas
complaints are external complaints with identity protection about the procurement

91

4

process. The scores of these cases obtained with the isolation forest implementation
were then analysed to measure the accuracy of the trained models.

4 Preliminary Results and Final Discussion

The results consists of three trained models and the anomaly score for each of the data
points. This anomaly score ranges between -1 and 1, where if it is less than 0 it is
considered an anomaly and if it is more than 0 is considered as normal. The following
Table 1 shows the total data points analysed per dataset, the total data points with
protests with judgments in favor of the protestant and with complaints per dataset, the
percentage of data points with protests and complaints detected as anomalous and the
execution times. The computational platform used was an Intel Core i7, with 16 GB
of RAM, running the iforest algorithm implementation of the Python scikit-learn
library with a 1000 estimators and 50 samples. The implementation and input/output
data can be found at https://gitlab.com/MaEliK/otherframeworks.

Table 1. Data points analysed and percentage of anomalous points detected

Data Set Number
of data
Points

Protests
in dataset

Complaints
in dataset

Protests
detected as
anomalous

Complaints
detected as
anomalous

Execution
Time

Planning
and
Tender

108470 599 297 48.75% 45.79% 9,119 s

Contracts 137783 1305 457 43.37% 42.45% 42,125 s

Contract
Modifica-
tions

29406 168 144 16.07% 31.94% 3,538 s

The obtained percentages show the proportion of data classified by the algorithm
as anomalous data. It can be noticed that it detects almost half of the known
potentially anomalous data, consistently in the planning and tender phases and the
contracting phase. Finally, this work proposes an alternative to automate the
regulatory control of procurement processes based on data analysis in OCDS format.
An unsupervised learning based technique is proposed that could classify in seconds
as anomalous more than 45% of the potentially anomalous dataset provided. Next
steps are to validate the obtained results with the DNCP staff and check results
according to local regulations. Also a better interpretation of the variables that
influence high anomalous scores is required.

References

1. OCDS Homepage, http://standard.open-contracting.org/latest/en/, last accessed
2019/03/14.

92

5

2. Liu, Fei Tony, Ting, Kai Ming and Zhou, Zhi-Hua. “Isolation forest.” Data Mining, 2008.
ICDM‘08. Eighth IEEE International Conference on.

3. Liu, Fei Tony, Ting, Kai Ming and Zhou, Zhi-Hua. “Isolation-based anomaly detection.”
ACM Transactions on Knowledge Discovery from Data (TKDD) 6.1 (2012): 3.

4. Conti, Pier Luigi & Naldi, Maurizio. (2009). Detection of Anomalous Bids in Procurement
Auctions. SSRN Electronic Journal. 10.2139/ssrn.1493346.

5. Issa, Hussein & Vasarhelyi, Miklos. (2011). Application of Anomaly Detection
Techniques to Identify Fraudulent Refunds. SSRN Electronic Journal.
10.2139/ssrn.1910468.

6. Deng, Qingshan & Mei, Guoping. (2009). Combining Self-Organizing Map and K-Means
Clustering for Detecting Fraudulent Financial Statements. 2009 IEEE International
Conference on Granular Computing, GRC 2009. 126-131. 10.1109/GRC.2009.5255148.

7. Panigrahi, Suvasini & Kundu, Amlan & Sural, Shamik & Majumdar, Arun. (2009). Credit
card fraud detection: A fusion approach using Dempster–Shafer theory and Bayesian
learning. Information Fusion. 10. 354-363. 10.1016/j.inffus.2008.04.001.

8. Ley 2051/03 “De Contrataciones Públicas”,
https://www.contrataciones.gov.py/documentos/download/marco-legal/12760, last
accessed 2019/03/14.

9. Development Gateway, Open Contracting Partnership, “Red Flags for integrity: Giving the
green light to open data solutions,” in press.

93

1

Map-Elites Algorithm for Features Selection
Problem

Brenda Quiñonez, Diego P. Pinto-Roa , Miguel Garćıa-Torresb, Maŕıa E.

Garćıa-Diaz , Carlos Núñez-Castillo and Federico Divina b

Facultad Politécnica - Universidad Nacional de Asunción 1

bDivision of Computer Science - Universidad Pablo de Olavide 2

Abstract

In the High-dimensional data analysis there are several challenges in
the fields of machine learning and data mining. Typically, feature selec-
tion is considered as a combinatorial optimization problem which seeks to
remove irrelevant and redundant data by reducing computation time and
improve learning measures. Given the complexity of this problem, we pro-
pose a novel Map-Elites based Algorithm that determines the minimum
set of features maximizing learning accuracy simultaneously. Experimen-
tal results, on several data based from real scenarios, show the effectiveness
of the proposed algorithm.

Keywords: Feature Selection, Map-Elites, Combinatorial Optimization,

Machine Learning, Data Mining

1 Introduction

Recently, the available data has increased explosively in both the number of
samples and the dimensionality in different machine learning applications, such
as text mining, artificial vision and bio-medical. Our interest is mainly focused
on the high dimensionality of the data. The large amount of high-dimensional
data has imposed a great challenge on existing machine learning methods. The
presence of noisy, redundant and irrelevant dimensions can make the learning
algorithms very slow and can also generate difficulties when interpreting the
resulting models [3]. In machine learning and statistics, the feature selection is
the process of selecting a subset of relevant characteristics to use in building the
model. Attribute selection methods greatly influence the success of data mining
processes by reducing computational time and improving learning metrics, for
this reason we propose a new attribute technique selection based on Illumination
Algorithm [1].

This paper is organized as follows. Section 2 introduces to the features
selection problem. Then, we describe the Illumination search algorithms in
Section 3, specifically the Map-Elites algorithm. The section 4 contains the
proposal of this paper and, finally, in the last section there is a brief discussion
of the results obtained so far.

1{bquinonez,dpinto,mgarcia,nunez}@pol.una.py
2{mgarciat,fdivina}@upo.es

94

2

2 The Feature Selection Problem

A feature selection algorithm basically is the combination of a search technique
to propose new subsets of features, with an evaluation measure that qualifies the
different subsets. The simplest algorithm is to test every possible subset of fea-
tures to find the one that minimizes the error rate. This is an exhaustive search
of space, and it is computationally intractable except for the smallest feature
sets; i.e. for n attributes, there are 2n solutions. The choice of the evaluation
metric has a great influence on the algorithm, and they can distinguish among
three main categories: wrap methods, filter methods and embedded methods
[3]. Wrappers use a search algorithm to search through the space of possible
features and evaluate each subset by running a model on the subset. Wrappers
can be computationally expensive and have a risk of over fitting to the model.
Filters are similar to Wrappers in the search approach, but instead of evalu-
ating against a model, a simpler filter is evaluated. Embedded techniques are
embedded in and specific to a model [3].

Many popular search approaches use greedy hill climbing, which iteratively
evaluates a candidate subset of features, then modifies the subset and evaluates
if the new subset is an improvement over the old. Evaluation of the subsets
requires a scoring metric that grades a subset of features.

Search approaches applied to the feature selection include: exhaustive, best
first, simulated annealing, genetic algorithm, greedy forward selection, greedy
backward elimination, particle swarm optimization, targeted projection pursuit,
Scatter Search, Variable Neighborhood Search [2, 4].

Genetic algorithm (GA) [5] method due to the capability to evolve new
features of the selected features and a vast exploration of the search space for
new fitter solutions. GA includes a subset of the growth-based optimization
methods aiming at the use of the GA operators such as selection, mutation
and recombination to a population of challenging problem solutions. GA has
been effectively applied to several optimization problems such as classification
tasks and pattern recognition. The GA’s stochastic component does not rule
out excitedly dissimilar solutions, which may give the better result. This has
the advantage that, given sufficient time and a well bOlli1ded problem, the
algorithm can discover a global optimum. It is well suited to feature selection
problems because of the above reason. In the next section it will describe the
MAP Elites algorithm based on genetic algorithms.

3 MAP Elites

The Multi-dimensional Archive of Phenotypic Elites (MAP-Elites) [1] algorithm
illuminates search spaces, which produces a large diversity of high-performing,
yet qualitatively different solutions, which can be more helpful than a single,
high-performing solution. Interestingly, because MAP-Elites explores more of
the search space, it also tends to find a better overall solution than state-of-the-
art search algorithms. This is because MAP-Elites illuminates the relationship

95

3

between performance and dimensions of interest in solutions. MATP-Elites
returns a set of high-performing and improves the state-of-the-art for finding
a single, best solution, it will catalyze advances throughout all science and
engineering fields.

MAP-Elites is quite simple. First, the user chooses a performance measure
f(x) that evaluates a solution x. Second, the user chooses N dimensions of
variation of interest that define a feature space of interest to the user. Each
dimension of variation is discretized based on user preference or available com-
putational resources. Given a particular discretization, MAP-Elites will search
for the highest performing solution for each cell in the N-dimensional feature
space. The search is conducted in the search space, which is the space of all
possible values of x, where x is a description of a candidate solution [1].

4 MAP-Elites for Feature Selection

In this paper we propose to use the Map-Elites algorithm as an innovative
technique for features selection in the automatic learning process. The challenge
of this problem is that the inputs variable are binary one, whereas the basic
Map-Elites was designed for real numbers. Therefore, the main objective of
this proposal will be to create a search space for a MAP-Elites for the binary
variables given the feature selection is a combinatorial problem.

To face this challenge, we represent a set of solutions as a vector with the
indexes of the selected features. Algorithm 1 shows the pseudo-code of the Com-
binatorial MAP-Elites proposed. To create the map that allows us to distribute
the solutions in the search space, we define the number of cells as the algorithm
input parameter NC. Subsequently, this parameter is used to calculate a num-
ber of fixed features per cell NFF, which are used as cell identifiers and help
determine which cell of the map each solution will be associated with (1). We
also use two more input parameters for the algorithm that are typical of genetic
algorithms such as the number of iterations I and the number of initial genomes
G.

Algorithm 1 Combinatorial Map-Elites algorithm for feature selection

1: procedure Map-Elites(NC, , G)
2: NFF← log2(NC)
3: MAP← odCe(NC,NFF) . (1)
4: for ter = 1→ do
5: if ter < G then
6: MAP← rndomSoton() . (2)
7: else
8: MAP← rndomVrton() . (3)
9: end if

10: end for
11: return MAP . feature-fitness map
12: end procedure

96

4

MAP-Elites starts by randomly generating G genomes (solutions coded) and
determining the performance and features of each (2). In a random order, those
genomes are placed into the cells to which they belong in the feature space (if
multiple genomes map to the same cell, the highest-performing one per cell is
retained). At that point the algorithm is initialized, and the following steps are
repeated until a termination criterion is reached I. A cell in the map is randomly
chosen and the genome in that cell produces an offspring via mutation and/or
crossover (3). The features and performance of that offspring are determined,
and the offspring is placed in the cell if the cell is empty or if the offspring
is higher-performing than the current occupant of the cell, in which case that
occupant is replaced by the new solution. The algorithm returns a map with
the best solution found for each cell along with the corresponding fitness.

5 Discussion

The proposed Map-Elites tries to determine the minimum set of features that
maximizes learning accuracy. This preliminary experiment was conducted using
different data sets from real scenarios obtained from [2]. Table 1 presents per-
formance of the algorithm where solutions were evaluated using Bayes Classifier
and 2-fold cross validation [2]. In this experiment the input parameters for the
algorithm were 5,000 iterations (I), a map of 8 cells (NC) and the number of
initial genomes (G) equal to 500. In addition, we able to see the accuracy ob-
tained by the proposed algorithm is promissory and at the same time it reduces
the number of features.

Table 1: Map-Elites result experiment with Bayes Classifier
Dataset All features Fitness Selected features

ionosphere 34 92.02 ± 2.38 12.6 ± .89
glass 9 70.12 ± 4.27 6.0 ± 1.00
anneal 38 96.44 ± 1.60 7.6 ± 1.34
tokyo1 44 92.91 ± 1.08 10.6 ± 2.51
spambase 57 91.76 ± .60 10.6 ± .89
kr-vs-kp 36 90.43 ± 1.46 3.0 ± .00
corral 6 86.90 ± 2.22 5.0 ± .00
breast-cancer 9 71.34 ± 3.95 3.6 ± .89
hypothyroid 29 96.66 ± .29 1.0 ± .00
labor 16 91.21 ± 11.14 5.0 ± .71
vote 16 95.63 ± 1.26 1.0 ± .00

Currently, the performance of Map-Elites is being tested and compared with
the competitive algorithms of the-state-of-the-art.

97

5

References

[1] Jean-Baptiste Mouret and Jeff Clune. “Illuminating search spaces by map-
ping elites”. CoRR. 2015.vol. abs/1504.04909

[2] Félix Garćıa López, Miguel Garćıa-Torres, Belén Melián Batista, José A.
Moreno Pérez, and J. Marcos Moreno-Vegatitle. “Solving feature subset
selection problem by a Parallel Scatter Search”. European Journal of Op-
erational Research. 2006.

[3] Miao, Jianyu Niu, Lingfeng. (2016). A Survey on Feature Selection. Pro-
cedia Computer Science. 91. 919-926. 10.1016/j.procs.2016.07.111.

[4] M. Garcia-Torres, F. Gomez-Vela, B. Melian, J.M. Moreno-Vega. High-
dimensional feature selection via feature grouping: A Variable Neighbor-
hood Search approach, Information Sciences, vol. 326, pp. 102-118, 2016.

[5] Sindhiya, S Selvaraj, Gunasundari. (2015). A survey on genetic algorithm
based feature selection for disease diagnosis system. Proceedings of ICCCS
2014 - IEEE International Conference on Computer Communication and
Systems. 164-169. 10.1109/ICCCS.2014.7068187.

98

Bringing Order to Data

Heidar Davoudi1, Parke Godfrey2, Lukasz Golab1, Mehdi Kargar3,
Divesh Srivastava4, and Jaroslaw Szlichta5

1University of Waterloo, Canada, 2 York University, Canada,
3 Ted Rogers School of Management, Ryerson University, Canada,

4 AT&T Labs-Research, USA, 5 University of Ontario Institute of Technology, Canada,
hdavoudi@uwaterloo.ca, godfrey@yorku.ca, lgolab@uwaterloo.ca,
kargar@ryerson.ca, divesh@research.att.com,szlichta@uoit.ca

Abstract. Integrity constraints (ICs) are widely used in business intelligence to
express and enforce application semantics. However, finding ICs manually is time
consuming, requires the involvement of domain experts, and is prone to human
error. Thus, techniques have been proposed to automatically find a variety of ICs.
We propose an algorithm to automatically discover order dependencies (ODs).
Prior work on OD discovery has factorial complexity, is not complete, and is not
concise. We propose an algorithm that finds a complete set of ODs with exponen-
tial worst-case time complexity in the number of attributes and linear complexity
in the number of tuples. We experimentally show that our algorithm is orders of
magnitude faster than the prior state-of-the-art.

Keywords: Integrity constraints · Order Dependency · Axiomatization.

1 Introduction

Ordered attributes, such as timestamps and numbers, are common in business data. Or-
der Dependencies (ODs) capture monotonic relationships among such attributes. For in-
stance, Table 1 shows employee tax records in which tax is calculated as a percentage
(perc) of salary (sal). The OD sal orders perc holds: if we sort the table by salary,
it is also sorted by percentage. Similarly, sal orders grp, subg: if we sort the table
by salary, it is also sorted by group with ties broken by subgroup. With interest in data
analytics at an all-time high, ODs can improve the consistency dimension of data qual-
ity and query optimization [4, 7–9]. ODs can describe business rules (data profiling);
and their violations can point out possible data errors. Furthermore, query optimizers
can use ODs to eliminate costly operators such as joins and sorts: ordered streams be-
tween query operators can exploit available indexes, enable pipelining, and eliminate
intermediate partitioning steps. Finally, ODs subsume Function Dependencies (FDs) as
any FD can be mapped to an equivalent OD by prefixing the left-hand-side attributes
onto the right-hand-side [6].

It is time consuming to specify integrity constraints manually, motivating the need
for their automatic discovery. However, since ODs are naturally expressed with lists
rather than sets of attributes (as in the example above), existing solutions have factorial
worst-case time complexity in the number of attributes [4]. We describe a more effi-
cient algorithm to discover ODs from data. First, we show that ODs can be expressed
with sets of attributes via a polynomial mapping into an equivalent set-based canoni-
cal form. Then, we introduce sound and complete axioms for set-based canonical ODs,

99

2 H. Davoudi, P. Godfrey, L. Golab, M. Kargar, D. Srivastava, J. Szlichta,

ID yr pos bin sal perc tax grp subg

t1 1 16 sec 1 5K 20% 1K A III
t2 2 16 dev 2 8K 25% 2K C II
t3 3 16 dir 3 10K 30% 3K D I

t4 1 15 sec 1 4K 20% 0.8K A III
t5 2 15 dev 2 6K 25% 1.5K C I
t6 3 15 dir 3 8K 25% 2K C II

Table 1: Employee salary data

{A} {B} {C}

{A,B} {A,C} {B,C}

{ }

{A,B,C}

Fig. 1: A set lattice for attributes A, B, C.

which lead to optimizations of the OD discovery algorithm by avoiding redundant com-
putation. This allows us to design a fast and effective OD discovery algorithm that has
exponential worst-case complexity, O(2|R|), in the number of attributes |R|, and linear
complexity in the number of tuples. We note that this short paper is a summary of our
published results in [5, 6, 10].

2 Order Dependency Discovery
2.1 Preliminaries
Order dependencies (ODs) describe relationships among lexicographical orderings of
sets of tuples, as in the SQL order by statement. Let X = [A |T] be a list of attributes,
where the attribute A is the head of the list, and the list T is the tail. For two tuples s and
t, we write s �X t iff sA < tA or (sA = tA and (T = [] or s �T t)). Given two lists of
attributes, X and Y, X 7→ Y denotes an OD, read as X orders Y. Table r satisfies X 7→ Y
iff, for all s, t ∈ r, s �X t implies s �Y t. Moreover, X and Y are order compatible,
denoted as X ∼ Y iff XY ↔ YX. (For example, month and week of the year in the
calendar are order compatible.)

We say that two tuples, s and t, are equivalent with respect to an attribute set X if
sX = tX . Any attribute set X partitions tuples into equivalence classes [3]. We denote
the equivalence class of a tuple t ∈ r with respect to a given set X by E(tX); i.e., E(tX)
= {s ∈ r | sX = tX }. A partition of r over X is the set of equivalence classes, ΠX
= {E(tX) | t ∈ r}. For instance, in Table 1, E(t1{year}) = E(t2{year}) = E(t3{year}) =
{t1, t2, t3} and Πyear = {{t1, t2, t3}, {t4, t5, t6}}.
2.2 Canonical Mapping and Axioms
Expressing ODs in a natural way relies on lists of attributes; e.g., in Table 1, sal 7→
grp, subg is not the same as sal 7→ subg, grp. In contrast, the order of attributes in
an FD does not matter. However, the list representation leads to high complexity when
discovering ODs [4]. Thus, we provide a polynomial mapping of list-based ODs into
equivalent set-based canonical ODs [5, 6, 10]. The mapping allows us to develop an
efficient OD discovery algorithm that traverses a much smaller set-containment lattice
rather than the list-containment lattice used in [4].

The mapping presented in Theorem 1 (below) converts a list-based OD into canon-
ical set-based ODs of two types. First, an attribute A is a constant within each equiva-
lence class with respect to a set of attributes X , denoted as X : [] 7→ A, if X′ 7→ X′A for
any permutation X′ of X (note that X functionally determines Y iff X 7→ XY, for any
list X over the attributes of X and any list Y over the attributes of Y [6]). Second, two
attributes, A and B, are order-compatible within each equivalence class with respect to
the set of attributes X , denoted as X : A ∼ B, if X′A ∼ X′B. The set X is called a con-
text. For example, in Table 1, bin is a constant in the context of pos, written as {pos}:

100

Bringing Order to Data 3

1. Reflexivity
X : [] 7→ A, ∀A ∈ X

2. Identity
X : A ∼ A

3. Commutativity
X : A ∼ B
X : B ∼ A

4. Strengthen
X :[] 7→ A
XA:[] 7→ B
X :[] 7→ B

5. Propagate
X :[] 7→ A
X : A ∼ B

6. Augmentation-I
X :[] 7→ A
ZX :[] 7→ A

7. Augmentation-II
X : A ∼ B
ZX : A ∼ B

8. Chain
X : A ∼ B1

∀i∈[1,n−1],X : Bi ∼ Bi+1

X : Bn ∼ C
∀i∈[1,n],XBi : A ∼ C
X : A ∼ C

Fig. 2: Set-based axiomatization for canonical ODs.

[] 7→ bin since E(t1{pos}) |= [] 7→ bin, E(t2{pos}) |= [] 7→ bin and E(t3{pos}) |=
[] 7→ bin. Also, {year}: bin ∼ salary because E(t1{year}) |= bin ∼ salary and
E(t4{year}) |= bin ∼ salary.

Theorem 1. X 7→ Y iff ∀j,X :[] 7→ Yj and ∀i, j, {X1, .., Xi−1, Y1, .., Yj−1}:Xi ∼ Yj .

Example 1. The OD [AB] 7→ [CD] is mapped into the following set of canonical ODs:
{A,B}:[] 7→ C, {A,B}:[] 7→ D, {}: A ∼ C, {A}: B ∼ C, {C}: A ∼ D, {A,C}: B ∼ D.

We present a sound and complete set-based axiomatization for ODs in Fig. 2 [6].
The set-based axioms allow us to design effective pruning rules for our OD discovery
algorithm. For example, OD X :[] 7→ A is trivial if A ∈ X by Reflexivity (see also
Example 2).

Theorem 2. The axiomatization for canonical ODs in Fig. 2 is sound and complete.

2.3 Discovery Algorithm
Given the mapping of a list-based OD into equivalent set-based ODs, we present an
algorithm, named FASTOD, that efficiently discovers a complete and minimal set of
set-based ODs over a given relation instance. In contrast, the OD discovery algorithm
from [4] traverses a lattice of all possible lists of attributes, which leads to factorial time
complexity. FASTOD starts the search from singleton sets of attributes and works its
way to larger attribute sets through a set-containment lattice (as in Figure 1), level by
level (l = 0, 1, . . .). When the algorithm is processing an attribute setX , it verifies ODs
of the form X \ A:[] 7→ A (let X \ A be shorthand for X \ {A}, where A ∈ X) and
X \ {A,B}: A ∼ B, where A, B ∈ X and A 6= B. Furthermore, an OD X \ A:[] 7→ A
should be minimal, that is, @ Y ⊂ X such that Y \ A:[] 7→ A is valid.

The algorithm maintains information about minimal ODs, in the form ofX \A:[] 7→
A, in the candidate set C+c (X) [3] (as ODs subsume FDs [7, 9]), where C+c (X) = {A ∈
R | ∀B∈X X \ {A,B}:[] 7→ B does not hold}. Similarly, it stores information about
minimal ODs in the form of X \ {A,B}: A ∼ B, in the candidate set C+s (X), where
C+s (X) = {{A,B} ∈ X 2 | A 6= B and ∀C∈X X \ {A,B,C}: A ∼ B does not hold,
and ∀C∈X X \ {A,B,C}:[] 7→ C does not hold}. The following lemmas can be used to
prune the search space:

Lemma 1. An OD X \ A:[] 7→ A, where A ∈ X , is minimal iff ∀B∈XA ∈ C+c (X \ B).

Lemma 2. An OD X \ {A,B}: A ∼ B, where A, B ∈ X and A 6= B, is minimal iff
∀C∈X\{A,B} {A,B} ∈ C+s (X \ C), and A ∈ C+c (X \ B) and B ∈ C+c (X \ A).

101

4 H. Davoudi, P. Godfrey, L. Golab, M. Kargar, D. Srivastava, J. Szlichta,

According to Lemma 1, we do not need to check X \A:[] 7→ A if A /∈ X ⋂
B∈X C+c (X \

B), and based on Lemma 2, we do not need to consider X \ {A,B}: A ∼ B if A /∈
C+c (X \ B) or B /∈ C+c (X \ A). Moreover, according to Lemma 3, we can delete nodes
from the lattice under the following conditions:

Lemma 3. Deleting node X from the lth lattice level, where l ≥ 2, has no effect on the
output set of minimal ODs if C+c (X) = {} and C+s (X) = {}.

Example 2. Let A:[] 7→ B, B:[] 7→ A and {}: A ∼ B. Since C+c ({A,B}) = {} and
C+s ({A,B}) as well as l = 2, by the pruning levels rule (Lemma 3), the node {A,B}
is deleted and the node {A,B,C} is not considered (see Figure 1). This is justified as
{AB}:[] 7→ C is not minimal by the Strengthen axiom, {AC}:[] 7→ B is not minimal
by Augmentation–I, {BC}:[] 7→ A is not minimal by Augmentation–I, {C}: A ∼ B is
not minimal by Augmentation–II, {A}: B ∼ C is not minimal by Propagate, and {B}:
A ∼ C is not minimal by Propagate.

Note that while we provide theoretical guarantees for FASTOD to find a complete set of
ODs, the ORDER algorithm [4] is not complete.

Theorem 3. The FASTOD algorithm computes a complete and minimal set of ODs.

In [10], we extend our algorithm to discover bidirectional ODs, which allow a mix
of ascending and descending (desc) orders. For example, a student with an alphabeti-
cally lower letter grade has a higher percentage grade than another student. We develop
additional pruning rules and show that efficiency of discovery of bidirectional ODs re-
mains the same as for one-directional ODs.

We experimentally compare FASTOD with previous approaches (ORDER [4]). Our
algorithm can be orders of magnitude faster. For instance, on the flight dataset from
http://metanome.de with 1K tuples and 20 attributes, FASTOD finishes the com-
putation in less than 1 second, whereas ORDER did not terminate after 5 hours. More-
over, FASTOD’s candidate sets do not increase in size during the execution of the algo-
rithm (unlike ORDER) because of the concise candidate representation (e.g., many ODs
that are considered minimal by ORDER are found to be redundant by our algorithm).

Finally, in [2], we show that a recent approach to OD discovery called OCDDIS-
COVER in Consonni et al. [1] is incorrect. We show that their claim of completeness of
OD discovery is not true. Built upon their incorrect claim, OCDDISCOVER’s pruning
rules are overly aggressive, and prune parts of the search space that contain legitimate
ODs. This is the reason their approach appears to be “faster” in practice than our FAS-
TOD discovery algorithm despite being significantly worse in asymptotic complexity.
Finally, we show that Consonni et al. [1] misinterpret our set-based canonical form for
ODs, leading to an incorrect claim that our FASTOD implementation has an error.

3 Conclusions

We presented an efficient algorithm for discovering ODs. The technical innovation that
made our algorithm possible is a novel mapping into a set-based canonical form and
an axiomatization for set-based canonical ODs. In future work, we plan to study condi-
tional ODs that hold over portions of data.

102

Bringing Order to Data 5

References

1. Consonni, C., Sottovia, P., Montresor, A., Velegrakis, Y.: Discovering Order Dependencies
through Order Compatibility. In: EDBT. pp. 409–420 (2019)

2. Godfrey, P., Golab, L., Kargar, M., Srivastava, D., Szlichta, J.: Errata note: Discovering
order dependencies through order compatibility. Technical Report, 5 pages, available at
https://arxiv.org/abs/1905.02010 (2019)

3. Huhtala, Y., Karkkainen, J., Porkka, P., Toivonen, H.: Efficient Discovery of Functional and
Approximate Dependencies Using Partitions. In: ICDE. pp. 392–401 (1998)

4. Langer, P., Naumann, F.: Efficient order dependency detection. VLDB J. 25(2), 223–241
(2016)

5. Mihaylov, A., Godfrey, P., Golab, L., Kargar, M., Srivastava, D., Szlichta, J.: FASTOD:
bringing order to data. In: 2018 IEEE 34th International Conference on Data Engineering
(ICDE). pp. 1561–1564. IEEE (2018)

6. Szlichta, J., Godfrey, P., Golab, L., Kargar, M., Srivastava, D.: Effective and Complete
Discovery of Order Dependencies via Set-based Axiomatization. PVLDB 10(7), 721–732
(2017)

7. Szlichta, J., Godfrey, P., Gryz, J.: Fundamentals of Order Dependencies. PVLDB, 5(11):
1220-1231 (2012)

8. Szlichta, J., Godfrey, P., Gryz, J., Ma, W., Qiu, W., Zuzarte, C.: Business-Intelligence Queries
with Order Dependencies in DB2. In: EDBT, 750-761 (2014)

9. Szlichta, J., Godfrey, P., Gryz, J., Zuzarte, C.: Expressiveness and Complexity of Order De-
pendencies. PVLDB 6(14): 1858-1869 (2013)

10. Szlichta, J., Godfrey, P., Golab, L., Kargar, M., Srivastava, D.: Effective and complete dis-
covery of bidirectional order dependencies via set-based axioms. The VLDB Journal 27(4),
573–591 (2018)

103

A Non-Uniform Tuning Method
for SQL-on-Hadoop Systems

Edson Ramiro Lucas Filho, Renato Silva de Melo, and Eduardo Cunha de
Almeida

Universidade Federal do Paraná, Brazil
{erlfilho,rsmelo,eduardo}@inf.ufpr.br

Abstract. A SQL-on-Hadoop query consists of a workflow of MapRe-
duce jobs with a single point of configuration. This means that the de-
veloper tunes hundreds of tuning parameters directly in the query source
code (or via terminal interface), but the system assumes the same con-
figuration to every running job. The lurking problem is that the system
allocates computing resources uniformly to every running job, even if
they present different consumption needs (after all the tuning setup is
the same). In this paper, we demonstrate that such uniform allocation
of resources drives the query to inefficient performance. We claim that
applying a non-uniform allocation method to define a customized tuning
setup for each job can outperform the uniform allocation. Ultimately, we
demonstrate that searching for specific tuning setup is an optimization
problem with polynomial cost.

Keywords: Tuning · Self-Tuning · SQL-on-Hadoop · MapReduce.

1 Introduction

Ever since the proliferation of SQL-on-Hadoop engines [2,7,3,23,8,14,22,1] the
number of configuration parameters exposed by such systems, and by the un-
derneath MapReduce systems [9,20], has grown considerably, as presented in
Figure 1. For instance, the SQL-on-Hadoop system Apache Hive has increased
from 96 configuration parameters in its 0.6.0 release up to 989 parameters in the
release 3.0.0. The underlying processing engine Apache Hadoop has increased
from 104 configuration parameters in its 0.12.0 release up to 530 parameters in
the release 3.1.0. The impact on performance of this growing number of tuning
parameters has given rise to a successful line of research on tuning MapReduce
systems [17,16,21,18,4,13,15,10,5,24,26,11,12,19].

However, tuning SQL-on-Hadoop queries is more complex than tuning MapRe-
duce jobs, because queries span a workflow of jobs with a single point of configu-
ration (i.e., the tuning setup is set in the query source code or via command line).
In practice, developers tune the physical resources to be allocated by the query
and the query processing engine propagates such set of physical resources to all
jobs in the query plan with potential inefficient performance (see Section 4).

In traditional SQL processing, a query plan indicates the execution flow for
the query operators. SQL-on-Hadoop processing is no different, but in the dis-

104

2 R.L.F. Edson et al.

0 10 20 30

0
200
400
600
800

1,000

SQL-on-Hadoop systems’ releases

#
p

a
ra

m
et

er
s

0 10 20 30
MapReduce systems’ releases

Hive SparkSQL Pig Hadoop Tez Spark

Fig. 1: Number of configuration parameters per release.

tributed environment of MapReduce systems every job of a query plan imple-
ments a different set of query operators with different resource consumption
needs [6,22]. For instance, while one job requires disk bandwidth due to a Ta-
bleScan operator, another job requires memory throughput due to a Sort op-
erator. The lurking problem of tuning SQL-on-Hadoop with a single point of
configuration: the propagation of the same set of physical resources to jobs with
different resource needs drives the query to inefficient performance.

Contribution. In order to avoid such propagation of tuning setup, we pro-
pose a novel resource allocation method that assigns a specific tuning setup
for each job in the query plan. We formulate the searching for specific tuning
setup as a combinatorial optimization problem, highlight its special structure,
and show that some special properties preserve the computational efficiency for
a particular input of this problem. We also present the shortcoming of tuning
SQL-on-Hadoop queries with the current MapReduce tuning advisers and how
these queries can achieve better performance when employing our method.

Structure. Section 2 presents the notations and definitions required for pre-
senting the problem. Section 3 presents the problem of tuning SQL-on-Hadoop
queries. Section 4 presents the current tuning allocation method and its impact
on SQL-on-Hadoop queries. Section 5 presents our method. Section 6 concludes.

2 Notation and Definitions

Let us define a query plan as a directed acyclic graph G = (V,E), where the set
of vertices V represents the MapReduce jobs, and the set of edges E denotes
the precedence between two jobs. More precisely, a vertex (job) j ∈ V is a tuple
of the form j = (Oj , Tj , Cj) in which Oj is the set of physical query operators
it executes, Tj is the set of associated input tables that are read and processed
by j, and Cj is the set of configurations used to allocate resources. In this set
each c ∈ C represents a configuration exposed by the SQL-on-Hadoop system
that allocates resources to jobs. Each directed edge is an ordered pair of vertices
e = (i, j) ∈ E that connects the jobs i to j, when the execution of i directly
precedes j.

Figure 2 illustrates the query plans compiled for TPC-H query 7, in version
0.13.1 and 3.1.0 of Apache Hive to reinforce the growing complexity of SQL-on-

105

A Non-Uniform Tuning Method for SQL-on-Hadoop Systems 3

v1 v2 v3 v4 v5 v6

v1

v2

v3

v4

v5

v6 v7

v8

v9

v10

v11

v12

v13

v14

v15

v16

v17

v18

v19

v20

v21 v22 v23

(a) Query plan compiled by Hive 0.13.1.

(b) Query plan compiled by Hive 3.1.0.

Fig. 2: Query plans for TPC-H query 7.

Hadoop queries. Note that the number of MapReduce jobs in each query plan
differs considerably across software releases due to the development of different
optimization techniques and the addition of new query operators. Although our
example sticks to the Apache Hive terminology other SQL-on-Hadoop systems
like Spark [3] and Impala [14] also represent the query plans as DAGs.

3 The Tuning Allocation Problem

In SQL-on-Hadoop systems, the task of allocating physical resources through
tuning setups mainly comprises two steps: (1) searching for the most efficient
tuning setup for a job j ∈ V , and (2) allocating the found tuning setup to the
same job j. We define the most efficient tuning setup as the configuration that
drives the query to decrease response time or minimize resource usage.

Searching for the most efficient tuning setup is a task performed by Tuning
Advisers. The common approach is to profile the query execution and, then,
to employ heuristics such as Genetic Algorithm [16,17,5], Hill Climbing [15,10],
Random Forest [4], Particle Swarm Optimization [13], Exhaustive Search [18],
Recursive Random Search [11] and others [21,27]. We define the searching for
the most efficient tuning setup as the Adviser Function, as follows:

Definition 1 (Adviser Function). We denote as f(j) the adviser function
f : V 7→ C which is responsible for always finding the most efficient tuning
setup Cj for j ∈ V , where the set C = {C1, . . . , Ck} is the collection of possible
configurations.

However, allocating the found tuning setup remains a problem due to the
single point of configuration of SQL-on-Hadoop queries. We propose to replace
the single point of configuration of queries, exposed to developers, by an auto-
mated tuning system able to allocate specific tuning setup per job. Thus, we

106

4 R.L.F. Edson et al.

define the task of allocating tuning setups Cj for each job j ∈ V in a query
plan G as the problem of assigning the most efficient tuning setup found by the
adviser function f(j).

In Definition 2, we formulate the tuning allocation as a combinatorial opti-
mization problem, and use this perspective to develop the reasoning about how to
improve the current allocation of configurations to jobs for a query plan. For the
problem definition, suppose that we have a computable function σ : C ×V → R,
where σ(Ci, j) determines the computational cost of execute a job j with a tun-
ing setup Ci. We define the problem of assigning the most efficient tuning setup,
as follows:

Definition 2 (Tuning Allocation Problem). Given a directed acyclic graph
G = (V,E) representing a query plan, a set C of possible configurations, and a
cost function σ : C × V → R. Find an assignment of tuning setups such that the
total cost to process all jobs is minimum, that is, the summation

∑

j∈V

∑

Ci∈C
σ(Ci, j)

is minimum.

Next, we present the current approach employed by SQL-on-Hadoop systems
to assign tuning setups to jobs. In Section 5, we present our approach to assign
tuning setups to jobs.

4 Uniform Tuning

The methodology employed by the current SQL-on-Hadoop engines allocates the
same physical resources to all jobs of a query plan. We name this methodology
as the Uniform Tuning method, and we treat it as a shortcoming for the query
plan. We define the Uniform Tuning method as follows:

Definition 3 (Uniform Tuning). The Uniform Tuning is the assignment of
configurations to jobs such that Cu = Cv for any u, v ∈ V and Cu, Cv ∈ C.

Despite the adviser function f(j) always find the most efficient tuning setup
Cj for every job j ∈ V , in the case where only one tuning setup Cj is repli-
cate to all jobs in V (according to Definition 3), Cj may negatively affect the
query’s performance, as we observe in Figure 3. The uniform tuning problem
becomes more severe because SQL-on-Hadoop systems delegate to developers
the responsibility to chose one of the available tuning setups Cj to be replicated.

The Fig. 3 illustrates that the Uniform Tuning drives the query processing
to inefficient performance in practice through experiments in the Amazon Elas-
tic MapReduce (EMR) cloud environment. We used Starfish [11] to generate
the tuning setups. We ran the TPC-H benchmark with Scale Factor of 100GB
on Apache Hive (version 0.13.1) and Apache Hadoop (version 0.20.2). We are
attached to these versions because they are the versions supported by Starfish.

107

A Non-Uniform Tuning Method for SQL-on-Hadoop Systems 5

.
T
u
n
in
g
-1

T
u
n
in
g
-2

T
u
n
in
g
-3

T
u
n
in
g
-4

T
u
n
in
g
-5

T
u
n
in
g
-6

−20

0

20
−

1
0
.4

9
8
.5

5

1
0
.3

4
0

9
.2

6
1
0
.3

4

S
p
e
e
d
u
p

(%
)

(a) Query 2.

T
u
n
in
g
-1

T
u
n
in
g
-2

T
u
n
in
g
-3

T
u
n
in
g
-4

−20

0

20

−
0
.7

4

−
2
.6

31
1
.7

8
.4

(b) Query 3.

T
u
n
in
g
-1

T
u
n
in
g
-2

T
u
n
in
g
-3

T
u
n
in
g
-4

−40

−20

0

20

−
3
8
.5

7

9
.3

1

8
.8

1

6
.4

8

(c) Query 4.

T
u
n
in
g
-1

T
u
n
in
g
-2

T
u
n
in
g
-3

T
u
n
in
g
-4

T
u
n
in
g
-5

T
u
n
in
g
-6

T
u
n
in
g
-7

−20

−10

0

10

−
1
8
.6

2

−
9
.7

2
−

0
.94
.4

9

4
.4

1
2
.6

2

0
.4

5

(d) Query 5.

T
u
n
in
g
-1

T
u
n
in
g
-2

T
u
n
in
g
-3

T
u
n
in
g
-4

T
u
n
in
g
-5

T
u
n
in
g
-6

−20

0

20

−
2
7
.8

6
−

2
7
.9

1
1
0
.0

3
1
3
.7

8
1
2
.6

6
1
.2

7

S
p
e
e
d
u
p

(%
)

(e) Query 7.

T
u
n
in
g
-1

T
u
n
in
g
-2

T
u
n
in
g
-3

T
u
n
in
g
-4

T
u
n
in
g
-5

T
u
n
in
g
-6

T
u
n
in
g
-7

T
u
n
in
g
-8

−200

−100

0

100

4
.6

7

5
.2

1

−
9
.6

5
−

1
0
.4

3
−

7
.4

9

−
1
9
2
.8

1

−
6
.4

1
−

9
5
.2

1

(f) Query 8.

T
u
n
in
g
-1

T
u
n
in
g
-2

T
u
n
in
g
-3

T
u
n
in
g
-4

T
u
n
in
g
-5

T
u
n
in
g
-6

T
u
n
in
g
-7

−50

0

50

1
4
.0

1

2
.4

1

−
6
3
.6

1
−

8
.2

2
−

3
.1

7
−

2
5
.8

1

−
6
6
.4

4

(g) Query 9.
T
u
n
in
g
-1

T
u
n
in
g
-2

T
u
n
in
g
-3

T
u
n
in
g
-4

T
u
n
in
g
-5

0

20

−
1
0
.9

3

−
0
.9

3

1
.0

1

0
.7

8

1
4
.8

1

(h) Query 10.

Fig. 3: Speedups compared to default configuration for the uniform tuning.
Tuning-{v}, represents a tuning setup generated by Starfish for the job v.

The experiments ran with 6 machines (type c5.2xlarge: 8 of CPU and 16GB of
RAM, 100GB of SSD disks). Each runtime is an average of 3 executions.

The x-axis represent the available tuning setups, where tuning-j represents
the given Cj generated for a job j. Each Cj was applied uniformly to the query
plan, following Definition 3. The y-axis represents the speedups when the execu-
tion of the query under the tuning-j is compared to the execution of the default
configuration. The default configuration is the configuration bundled with the
SQL-on-Hadoop system and is our baseline. According to Definition 3, each
tuning setup allocates a different set of resources uniformly to the query, conse-
quently, producing a different outcome. Note that in all queries the performance
degrades due to the presence of the uniform allocation of resources, as expected.

We claim that applying a non-uniform allocation method to define a cus-
tomized tuning setup for each job can outperform the current alternative (uni-
form tuning), which consists of choosing arbitrarily a tuning setup C0 and repli-
cate it to all jobs. Therefore, our contribution is a non-uniform allocation method
that allows SQL-on-Hadoop systems to apply specific tuning setup per job.

108

6 R.L.F. Edson et al.

5 Non-Uniform Tuning

For a query plan G = (V,E), every job implements a different set of SQL opera-
tors, i.e., for every job u, v ∈ V we have Ou 6= Ov. Consequently, we assume that
each job presents different resource consumption needs [6]. For instance, while
a job u requires disk bandwidth due to a TableScan operator, another job v re-
quires memory throughput due to a Sort operator. Next, the rest of this section
discuss properties and facts about the particular structure of this problem. The
first fact states that the optimum of the problem presented in Definition 2 can
be found efficiently when using a non-uniform tuning method. Since this study
aims to find a way to do more efficient queries, it is very important to be sure
that the allocation of optimal tuning can be made in polynomial time.

The following integer linear programming model describes the optimal so-
lution for the Tuning Allocation Problem. We define the binary decision
variable xij ∈ {0, 1} to indicate whether a tuning setup Ci ∈ C is assigned to
a job j ∈ V . Let the coefficient cij = σ(Ci, j) be the computational cost for
executing a job j with the tuning setup Ci.

Minimize
∑

j∈V

∑

Ci∈C
cijxij (1)

subject to
∑

Ci∈C
xij = 1 ∀j ∈ V (2)

∑

j∈V

xji = 1 ∀Ci ∈ C (3)

xij ∈ {0, 1} ∀Ci ∈ C,∀j ∈ V (4)

The objective function (1) minimizes the computational cost in processing all
the jobs for a given query plan. Constraints in (2) ensure that exactly one tuning
setup is assigned to a vertex. Reciprocally, the equality in (3) says that only one
vertex j ∈ V can choose a tuning setup Ci ∈ C. Finally, the constraints in (4)
preserve the decision variable’s integrality.

Claim 1. The Non-Uniform Tuning method can find the optimal solution for the
Tuning Allocation Problem in polynomial time.

The program in (1)-(4) describes precisely the model of an well known com-
binatorial optimization problem called Assignment Problem. For clarity of
exposition, we present a procedure to transform an instance 〈G = (V,E), C〉 of
the Tuning Allocation Problem into an instance 〈G′ = (V ′, E′)〉 of the orig-
inal Assignment Problem as follows. Let G′ be a undirected graph such that
we create a new vertex i associated to each set Ci ∈ C. Also add a copy of
each j ∈ V and define U as the set of all i added to G′ in this way we have
V ′ = U ∪ V with U and V disjoint. Now, we add an edge {i, j} between every
vertex i ∈ U and j ∈ V . The cost of assigning a tuning setup Ci to job j is cij
and can be interpreted as an weight on the edge {i, j} ∈ E′. Notice that all edges

109

A Non-Uniform Tuning Method for SQL-on-Hadoop Systems 7

in E′ go between U and V . This implies that G′ (the input of the Assignment
Problem) is a complete bipartite graph.

Even though the Assignment Problem problem is known to be NP-hard,
an optimal solution can be obtained efficiently (within execution time bounded
by a polynomial function) when the input graph is bipartite [25]. Therefore,
the problem can be solved efficiently, because of the total unimodularity of the
constraint matrix of the Assignment Problem.

An important observation about the Tuning Allocation Problem is that
if we drop the constraints (3) of the linear model, the solution remains feasible for
the problem. It means that we can attribute a configuration Ci to more than one
job (otherwise, the uniform tuning method would not be feasible). Therefore, the
natural formulation for this problem is a relaxation for the Assignment Prob-
lem. Actually, the resulting integer linear program can be rewritten as follows:

Minimize
∑

j∈V

∑

Ci∈C
cijxij

subject to
∑

Ci∈C
xij = 1 ∀j ∈ V

xij ∈ {0, 1} ∀Ci ∈ C,∀j ∈ V.

Fortunately, the coefficient matrix does not change, and we still have an
incidence matrix of a bipartite graph. In this way, the matrix of coefficients
of the problem maintains the total unimodularity. Consequently, the Tuning
Allocation Problem also can be solved in polynomial time.

Claim 2. For a query plan G = (V,E), in worst case, the non-uniform method
is equal to the uniform method, otherwise the non-uniform method performs
better.

Let the tuning setup C0 be the one assigned to all jobs j ∈ V of the query plan
G using the uniform tuning. Now, consider the case with non-uniform tuning in
which for the same query plan G, the most efficient tuning for every job j can
be obtained by calling interactively the function f(j) (see Definition 1). Directly
from definition of the adviser function f(j), we have the following inequality

σ(f(j), j) ≤ σ(C0, j) (5)

for every job j ∈ V . The inequality says that, in the best case for the uniform
tuning, the arbitrary tuning setup C0 can be the most efficient for j, but there
are no guarantees that it will happen. While attributing a tuning setup Ci chosen
by the function f(j), we know that it is always the most suitable tuning setup
for j. Consequently, the total cost required to execute all jobs j ∈ V of the
query plan G using the non-uniform method, can be written, as the following
summation: ∑

j∈V

σ(f(j), j).

110

8 R.L.F. Edson et al.

So, from the inequality (5) we can compare the total costs of the two methods,
as follows: ∑

j∈V

σ(f(j), j) ≤
∑

j∈V

σ(C0, j),

i.e., the computational cost for executing the query plan G using the non-uniform
assignment method is at most equals to the cost for the uniform method.

The advantage of using the uniform tuning method is that it is simple and
straightforward, i.e., the SQL-on-Hadoop engine just replicates the chosen tun-
ing setup. On the other hand, there are no guarantees that the chosen tuning
setup will perform well during the query’s execution. In this sense, our proposal
of non-uniform tuning personalizes the tuning setup for each job and the optimal
assignment of tuning setups is guaranteed. In other words, the Tuning allo-
cation Problem can be solved optimally with the non-uniform tuning method
and Claim 1 shows that it can be done in polynomial time. Furthermore, a di-
rect consequence of the non-uniform tuning method is the improvement in the
performance of the query plan, as stated in Claim 2.

6 Conclusion

In this paper we presented the shortcoming of MapReduce tuning advisers when
applied to SQL-on-Hadoop systems due to the uniform allocation of physical
resources and its consequences on query’s performance. After, we modeled the
Tuning Allocation Problem in order to solve the uniform allocation of
physical resources. We presented our Non-Uniform Tuning method and proved
that it allows assigning optimal tuning setups to SQL-on-Hadoop queries. We
also proved that the optimal set of tuning setups required by a query can be
found in polynomial time. For future work, an interesting direction consists of
combining multiple tuning advisers to optimize one single query, once different
tuning advisers focus on different query operators with different resource usage.

Acknowledgement: This study was financed in part by the Coordenação de Aper-
feiçoamento de Pessoal de Nı́vel Superior - Brasil (CAPES) - Finance Code 001.

References

1. Abouzeid, A., Bajda-Pawlikowski, K., Abadi, D., Silberschatz, A., Rasin, A.:
HadoopDB: An Architectural Hybrid of MapReduce and DBMS Technologies for
Analytical Workloads. Proceedings of the VLDB Endowment (2009)

2. Apache Software Foundation: Apache Flink: Stateful Computations over Data
Streams. Apache.Org (2015)

3. Armbrust, M., Xin, R.S., Lian, C., Huai, Y., Liu, D., Bradley, J.K., Meng, X.,
Kaftan, T., Franklin, M.J., Ghodsi, A., Zaharia, M.: Spark SQL: Relational Data
Processing in Spark

4. Bei, Z., Yu, Z., Zhang, H., Xiong, W., et al.: RFHOC: A Random-Forest Approach
to Auto-Tuning Hadoop’s Configuration. TPDS (2016)

5. Bei, Z., Yu, Z., Liu, Q., Xu, C., et al.: MEST: A Model-Driven Efficient Searching
Approach for MapReduce Self-Tuning. IEEE Access (2017)

111

A Non-Uniform Tuning Method for SQL-on-Hadoop Systems 9

6. Boncz, P.A., Neumann, T., Erling, O.: Tpc-h analyzed: Hidden messages and
lessons learned from an influential benchmark. In: TPCTC (2013)

7. Chen, S.: Cheetah: a high performance, custom data warehouse on top of MapRe-
duce. Proceedings of the VLDB Endowment (2010)

8. Costea Adrian Ionescu Bogdan, A.R., Micha Switakowski Cristian Bârc, A., Som-
polski Alicja Luszczak Micha l Szafrá nski Giel de Nijs Peter Boncz, J.: VectorH:
Taking SQL-on-Hadoop to the next level. In: International Conference on Man-
agement of Data - SIGMOD (2016)

9. Dean, J., Ghemawat, S.: MapReduce: Simplified Data Processing on Large Clus-
ters. In: OSDI’04 (2004)

10. Ding, X., Liu, Y., Qian, D.: JellyFish: Online Performance Tuning with Adaptive
Configuration and Elastic Container in Hadoop Yarn. In: ICPADS (2015)

11. Herodotou, H., Lim, H., Luo, G., Borisov, N., Dong, L.: Starfish: A Self-tuning
System for Big Data Analytics. CIDR (2011)

12. Jiang, D.: The Performance of MapReduce : An In-depth Study. Proceedings of
the VLDB Endowment (2010)

13. Khan, M., Huang, Z., Li, M., Taylor, G.A., Khan, M.: Optimizing Hadoop param-
eter settings with gene expression programming guided PSO. Concurrency and
Computation: Practice and Experience (2017)

14. Kornacker, M., Behm, A., Bittorf, V., et al.: Impala: A Modern, Open-Source SQL
Engine for Hadoop. CIDR (2015)

15. Li, M., Zeng, L., Meng, S., Tan, J., et al.: MRONLINE: MapReduce online perfor-
mance tuning. In: HPDC (2014)

16. Liao, G., Datta, K., Willke, T.L., Kalavri, V., et al.: Gunther: Search-based auto-
tuning of MapReduce. Euro-Par (2013)

17. Liu, C., Zeng, D., Yao, H., Hu, C., et al.: MR-COF: A Genetic MapReduce Con-
figuration Optimization Framework. In: Theoretical Computer Science (2015)

18. Liu, J., Ravi, N., Chakradhar, S., Kandemir, M.: Panacea: towards holistic opti-
mization of MapReduce applications. In: CHO (2012)

19. Qin, X., Chen, Y., Chen, J., Li, S., Liu, J., Zhang, H.: The Performance of SQL-
on-Hadoop Systems - An Experimental Study. In: IEEE International Congress on
Big Data (2017)

20. Sakr, S., Liu, A., Fayoumi, A.G.: The Family of MapReduce and Large-Scale Data
Processing Systems. ACM Computing Surveys (2013)

21. Shi, J., Zou, J., Lu, J., Cao, Z., Li, S., Wang, C.: MRTuner: A Toolkit to Enable
Holistic Optimization for MapReduce Jobs. PVLDB (2014)

22. Tapdiya, A., Fabbri, D.: A Comparative Analysis of State-of-The-Art SQL-on-
Hadoop Systems for Interactive Analytics. In: IEEE International Conference on
Big Data (2017)

23. Thusoo, A., Sarma, J.S., Jain, N., Shao, Z., Chakka, P., Anthony, S., Liu, H., Wyck-
off, P., Murthy, R.: Hive: a Warehousing Solution Over a Map-Reduce Framework.
Proceedings of the VLDB Endowment (2009)

24. Van Aken, D., Pavlo, A., Gordon, G.J., Zhang, B.: Automatic Database Manage-
ment System Tuning Through Large-scale Machine Learning. In: SIGMOD (2017)

25. Wolsey, L.A., Nemhauser, G.L.: Integer and combinatorial optimization. John Wi-
ley & Sons (2014)

26. Yang, H., Luan, Z., Li, W., Qian, D.: MapReduce Workload Modeling with Statis-
tical Approach. Journal of Grid Computing (2012)

27. Zhang, B., Krikava, F., Rouvoy, R., Seinturier, L.: Self-Balancing Job Parallelism
and Throughput in Hadoop. In: DAIS (2016)

112

Datalog-based Reasoning for Knowledge Graphs

Luigi Bellomarini1,2, Georg Gottlob1,3, and Emanuel Sallinger1,3

1 University of Oxford
2 Banca d’Italia

3 TU Wien

Abstract. This is a short abstract based on the recently published VLDB 2018 paper
[6] – the main technical paper describing the Vadalog system. It describes the central
motivations and gives useful pointers on the architecture and the main algorithms.

Introduction and motivation. The importance of capitalizing and exploiting corporate
knowledge has been clear to decision makers since the late 1970s, when this idea was
gradually made concrete in the context of expert systems, software frameworks able to
harness such knowledge and provide answers to structured business questions. Through
deductive database systems – database systems that have advanced reasoning capabil-
ities – and in particular the language Datalog, the area became of high interest to the
database community in the 1980s and 1990s. Nevertheless, even though the importance
of harnessing knowledge certainly has grown steadily since then, culminating in today’s
desire of companies to exploit knowledge graphs, the interest in deductive databases has
faltered due to immature technology and overly complicated KRR formalisms.

Yet, we are currently assisting to a resurgence of Datalog in academia and industry
[1, 4, 7–10]: companies like LogicBlox have proven that a fruitful exchange between
academic research and high-performance industrial applications can be achieved based
on Datalog [1], and companies like LinkedIn have shown that the interest in Datalog
permeates industry [16]. Meanwhile, the recent interest in machine learning brought
renewed visibility to AI, raising interest and triggering investments in thousands of
companies world-wide, which suddenly wish to collect, encapsulate and exploit their
corporate knowledge in the form of a knowledge graph.

In this context, it has been recognized that to handle the complex knowledge-based
scenarios encountered today, such as reasoning over large knowledge graphs, Data-
log has to be extended with features such as existential quantification. Yet, Datalog-
based reasoning in the presence of existential quantification is in general undecidable.
Many efforts have been made to define decidable fragments. Warded Datalog± is a very
promising one, as it captures PTIME complexity while allowing ontological reasoning.
Yet, so far, no implementation of Warded Datalog± was available.

We recently introduced the Vadalog system, a Datalog-based system for performing
complex logic reasoning tasks, such as those required in advanced knowledge graphs;
it is Oxford’s contribution to the VADA research programme [18, 13], a joint effort of
the universities of Oxford, Manchester and Edinburgh and around 20 industrial partners
such as Facebook, BP, and the NHS (UK national health system). The Vadalog system
proposes the first implementation of Warded Datalog±, a high-performance Datalog±

system utilising an aggressive termination control strategy. In this paper, we summarise
the key aspects of the Vadalog system, while pointing to the original technical paper for
the details and a comprehensive experimental evaluation.

113

Reasoning over knowledge graphs. The term knowledge graph (KG) has no standard
definition. It can be seen as referring only to Google’s Knowledge Graph, to triple-based
models, or to multi-attributed graphs, which represent n-ary relations [15, 17]. As shown
by Krötzsch [14], in order to support rule-based reasoning on such data structures, it
is sometimes necessary to use tuples of arity higher than three at least for intermediate
results. In this paper, we adopt a general notion of KGs by allowing relations of arbitrary
arity, to support all of these models and modes of reasoning.

Example 1. An example of a simple knowledge graph reasoning setting is given in [15]:

Spouse(x, y, start, loc, end)→ Spouse(y, x, start, loc, end)

This rule expresses that when a person x is married to a person y at a particular location,
starting date and end date, then the same holds for y and x. That is, the graph of persons
and their marriage relations is symmetric.

As stated in [15], most modern ontology languages are not able to express this exam-
ple. Beyond this simple example, there are numerous requirements for a system that
allows ontological reasoning over KGs. Navigating graphs is impossible without pow-
erful recursion; ontological reasoning is impossible without existential quantification
in rule heads [12]. Yet reasoning with recursive Datalog is undecidable in the presence
of existential quantification, so some tradeoffs have to be accepted. While a compre-
hensive analysis of various requirements was given in [5], let us isolate three concrete
characteristics for a language that supports reasoning over KGs:

1. Recursion over KGs. Should be at least able to express full recursion and joins,
i.e., should at least encompass Datalog. Full recursion in combination with arbitrary
joins allows to express complex reasoning tasks over KGs. Navigational capabilities,
empowered by recursion, are vital for graph-based structures.

2. Ontological Reasoning over KGs. Should at least be able to express SPARQL rea-
soning under the OWL 2 QL entailment regime and set semantics. OWL 2 QL is one
of the most adopted profiles of the Web Ontology Language, standardized by W3C.

3. Low Complexity. Reasoning should be tractable in data complexity. This is a mini-
mal requirement for allowing scalability over large volumes of data.

Beyond these specific requirements, the competition between powerful recursion, pow-
erful existential quantification and low complexity has spawned fruitful research through-
out the community to address the mentioned Datalog undecidability in the presence of
existential quantification. This has been done under a number of different names, but
which we shall here call Datalog±, the “+” referring to the additional features (including
existential quantification), the “-” to restrictions that have to be made to obtain decid-
ability. Many languages within the Datalog± family of languages have been proposed
and intensively investigated [2, 3, 7–10]. Depending on the syntactic restrictions, they
achieve a different balance between expressiveness and computational complexity.

Figure 1 gives an overview of the main Datalog± languages. In fact, most of these
candidates, including Linear Datalog±, Guarded Datalog±, Sticky Datalog± and Weakly
Sticky Datalog± do not fulfil (1). Datalog itself does not fulfil (2). Warded and Weakly
Frontier Guarded Datalog± satisfy (1) and (2), thus are expressive enough. However,

114

Fig. 1: Syntactic containment of Datalog± languages. Annotations (non-bold) denote
data complexity. All names that do not explicitly mention Datalog refer to the respective
Datalog± languages. E.g., “Sticky” refers to “Sticky Datalog±”.

the expressiveness of Weakly Frontier Guarded Datalog± comes at the price of it being
EXPTIME-complete [3]. Thus it does not fulfil (3). Thus, in total, the only known
language that satisfies (1), (2) and (3) is Warded Datalog±. Yet, while Warded Datalog±

has very good theoretical properties, the algorithms presented in [12] are alternating-
time Turing machine algorithms, far away from a practical implementation.

Before summarising the characteristics of the Vadalog system, let us propose an
example of a Datalog program, which we consider representative of the complexity of
a typical reasoning setting involving KGs. The example is at the same time close to a
classical scenario [11] as well as relevant for an application of the KG of one of our
current industrial partners; in particular, for detecting specific risks related to issuers or
guarantors for funds that are non-eligible due to their financing arrangement: in Europe
there is prohibition on guaranteed debt instruments issued by a “closely-linked entity”.

Example 2. Consider a set of rules about ownership relationships among a large number
of companies. The extensional knowledge is stored in a database in the form of tuples
of a relation Own(comp1, comp2,w): company comp1 directly owns a fraction w of
company comp2, with 0 ≤ w ≤ 1. In addition, with a set of two rules, we intensionally
represent the concept of company control (also studied in [11]): a company x controls
a company y if company x directly owns more than half of the shares of company y or
if x controls a set S of companies that jointly own more than half of y. Note that the
msum operator, i.e., aggregation in the form of monotonic sum, is not a standard feature
of Datalog, but an extension that some Datalog-based systems support [6].

115

Control(x, x).
Own(x, y,w),w > 0.5→ Control(x, y)

Control(x, y),Own(y, z,w), v = msum(w, 〈y〉), v > 0.5→ Control(x, z).

Here, for fixed x, the aggregate construct msum(w, 〈y〉) forms the sum over all values w
such that for some company y, Control(x, y) is true, and Own(y, z,w) holds, i.e., com-
pany y directly owns fraction w of company z. Now, with the described knowledge
graph, many questions can be asked, such as: (i) obtain all the pairs (x, y) such that
company x controls company y; (ii) which companies are controlled by x? Which com-
panies control x? (iii) does company x control company y?

The Vadalog system. The Vadalog system is built around the Vadalog language, with
Warded Datalog± as its logical core. It is currently used as the core deductive database
system of the overall Vadalog Knowledge Graph Management System described in [5],
as well as at various industrial partners, including the finance, security, and media in-
telligence industries. The main contributions are:

– A novel analysis of Warded Datalog±, which culminates in the first practical algo-
rithm for Warded Datalog±. In the Vadalog system, the core principle behind the
reasoning process is performing an aggressive termination control, which amounts
to adopting dynamic programming strategies to preempt the generation of already
explored areas of the KG as well as isomorphic ones, guaranteeing at the same time
termination (as the fragment is decidable) and efficiency (as all the “informative”
KG areas can be explored in PTIME). To achieve this goal, it is essential to recog-
nise these KG areas as early as possible.
While the naı̈ve solution would imply a full caching of all the generated facts, the
challenge here is guaranteeing limited memory footprint. We identify a number of
guide data structures that closely exploit the underpinnings of Warded Datalog± and
allow to abstract large KG areas by means of single representative facts (or patterns
thereof). More in particular, we propose structures that play a complementary role for
exploiting the periodicity of the KG: warded forest, which actually allows vertical
pruning of isomorphic trees based on root isomorphism, and (lifted) linear forest,
which allows horizontal pruning of entire pattern-isomorphic trees.

– A system and architecture that implements this algorithm in a relational database-
inspired operator pipeline architecture. The pipeline’s operators rely on termination
strategy wrappers which transparently prevent the generation of facts that may lead
to non-termination while ensuring the correctness of the result. The system is com-
pleted by a wide range of standard and novel optimisation techniques such as the
dynamic construction of in-memory indices, stream-optimized “slot machine” joins,
monotonic aggregation, materialization points, etc.

– The technical paper also presents a full-scale experimental evaluation of the Vada-
log system on a variety of real-world and synthetic scenarios that thoroughly validate
the effectiveness of our techniques on Warded Datalog± in absolute terms and com-
paratively with the top existing systems, which are outperformed by our reasoner.

116

Acknowledgements. This work is supported by the EPSRC programme grant VADA
EP/M025268/1, the Vienna Science and Technology Fund (WWTF) grant VRG18-013,
and the EU Horizon 2020 grant 809965.

References

1. M. Aref, B. ten Cate, T. J. Green, B. Kimelfeld, D. Olteanu, E. Pasalic, T. L. Veldhuizen,
and G. Washburn. Design and implementation of the LogicBlox system. In SIGMOD, pages
1371–1382, 2015.

2. J. Baget, M. Leclère, and M. Mugnier. Walking the decidability line for rules with existential
variables. In KR. AAAI Press, 2010.

3. J. Baget, M. Mugnier, S. Rudolph, and M. Thomazo. Walking the complexity lines for
generalized guarded existential rules. In IJCAI, pages 712–717. IJCAI/AAAI, 2011.

4. P. Barceló and R. Pichler, editors. Datalog in Academia and Industry - Second International
Workshop, Datalog 2.0, Vienna, Austria, September 11-13, 2012. Proceedings, volume 7494
of Lecture Notes in Computer Science. Springer, 2012.

5. L. Bellomarini, G. Gottlob, A. Pieris, and E. Sallinger. Swift logic for big data and knowledge
graphs. In IJCAI, pages 2–10, 2017.

6. L. Bellomarini, E. Sallinger, and G. Gottlob. The vadalog system: Datalog-based reasoning
for knowledge graphs. PVLDB, 11(9):975–987, 2018.

7. A. Calı̀, G. Gottlob, and M. Kifer. Taming the infinite chase: Query answering under expres-
sive relational constraints. J. Artif. Intell. Res., 48:115–174, 2013.

8. A. Calı̀, G. Gottlob, and T. Lukasiewicz. A general Datalog-based framework for tractable
query answering over ontologies. J. Web Sem., 14:57–83, 2012.

9. A. Calı̀, G. Gottlob, T. Lukasiewicz, B. Marnette, and A. Pieris. Datalog+/-: A family of
logical knowledge representation and query languages for new applications. In LICS, pages
228–242, 2010.

10. A. Calı̀, G. Gottlob, and A. Pieris. Towards more expressive ontology languages: The query
answering problem. Artificial Intelligence, 193:87–128, 2012.

11. S. Ceri, G. Gottlob, and L. Tanca. Logic programming and databases. Springer, 2012.
12. G. Gottlob and A. Pieris. Beyond SPARQL under OWL 2 QL entailment regime: Rules to

the rescue. In IJCAI, pages 2999–3007, 2015.
13. N. Konstantinou, M. Koehler, E. Abel, C. Civili, B. Neumayr, E. Sallinger, A. A. A. Fer-

nandes, G. Gottlob, J. A. Keane, L. Libkin, and N. W. Paton. The VADA architecture for
cost-effective data wrangling. In SIGMOD Conference, pages 1599–1602. ACM, 2017.

14. M. Krötzsch. Efficient rule-based inferencing for OWL EL. In IJCAI 2011, pages 2668–
2673, 2011.

15. M. Marx, M. Krötzsch, and V. Thost. Logic on MARS: ontologies for generalised property
graphs. In IJCAI 2017, pages 1188–1194, 2017.

16. W. E. Moustafa, V. Papavasileiou, K. Yocum, and A. Deutsch. Datalography: Scaling datalog
graph analytics on graph processing systems. In BigData, pages 56–65. IEEE, 2016.

17. J. Urbani, C. J. H. Jacobs, and M. Krötzsch. Column-oriented datalog materialization for
large knowledge graphs. In AAAI 2016, pages 258–264, 2016.

18. VADA. Project. http://vada.org.uk/, 2016.

117

Dynamic Pipelining of Multidimensional Range
Queries?

Amalia Duch, Daniel Lugosi, Edelmira Pasarella, and Cristina Zoltan

Universitat Politècnica de Catalunya, Spain
{duch,edelmira,zoltan}@cs.upc.edu

Abstract. The problem of evaluating orthogonal range queries efficiently
has been studied widely in the data structures community. It has been
common wisdom for several years that for queries containing more than
20% of the elements of the dataset a linear scanning of the data was
the most efficient solution. In recent experimental works using modern
hardware–with main memory and parallelism– the conclusion is that lin-
ear scan is preferable for almost every query configuration (even contain-
ing a 1% of the data). In this work we propose an alternative approach to
evaluate multidimensional range queries based on the dynamic pipeline
paradigm –using main memory and concurrency. Our aim is to prove that
under this framework, it is possible to beat the performance of linear
scanning by the one of hierarchical multidimensional data structures–
such as kd trees, quad trees, R trees or similar.

1 Introduction

It is a common task nowadays to ask Google Maps for the closest gas station
or TripAdvisor for good restaurants around a specific area. These requests are
examples of a computing task –frequent in a wide range of applications– that is
formally called the Associative Retrieval problem [2, 4]. In associative retrieval
we consider a collection F of n records. Each record (or key) is an ordered k-tuple
(k ≥ 2) x = (x1, . . . , xk) of values (the attributes or coordinates of the record)
drawn from domain D =

∏
1≤j≤k Dj , where each Dj is totally ordered.

A range query over F is the retrieval of those of its records that fall inside
a given region. Specifically, we consider orthogonal range queries Q, in which
the region is specified by a sequence of s unidimensional ranges, this is, Q =
(i1, l1, u1), . . . , (is, ls, us), where 1 ≤ s ≤ k, ij 6= ij′∀j 6= j′ (with 1 ≤ j ≤ s
and 1 ≤ j′ ≤ s) and every triplet (ij , lj , uj) fix the lower (lj) and upper (uj)
boundaries of the unidimensional range for coordinate ij (1 ≤ ij ≤ k). If s = k
then we say that Q is a complete range query. Otherwise, we say that it is partial.

In order to efficiently deal with orthogonal range queries the storage of the
records in F should be crucial. Extensive collections of general purpose mul-
tidimensional data structures –such as kd-trees, quad-trees or R-trees– have
been proposed theoretically as adequate storage methods [2, 4] to support range

? Work supported by grant GRAMM (TIN2017-86727-C2-1-R) and EU FEDER funds.

118

queries. However, in practice, the usefulness of this approach heavily relies on the
selectivity and configuration of the sequence of range queries and, unfortunately
common wisdom told that a simple scan beats multidimensional data structures
for queries accessing more than 15%-20% of a data collection [5].

Recently, multidimensional range queries as well as the efficiency of hier-
archical multidimensional data structures to support them have been revisited
under a modern hardware perspective [5]. Moreover, in [5] the authors state that
in current machines –using main memory and parallelisation– data structures
are useless even for very selective range queries an thus, they conclude that in
current machines scanning should be favoured over parallel versions of such data
structures.

In this work, we propose a new way to parallelise the multidimensional range
query problem using the dynamic pipeline model [1, 3]. Our aim is to prove
that, with our algorithm, the use of hierarchical multidimensional data struc-
tures would be preferable over scanning for range queries containing a sub-linear
number of elements of the collection.

2 Dynamic Pipeline Algorithms

We propose an algorithm based on a dynamic pipeline [1, 3] of processes via
an asynchronous model of computation, synchronised by means of channels. In
general, a dynamic pipeline is a data-driven unidimensional and unidirectional
chain of stages connected by means of data channels. This computational struc-
ture stretches and shrinks depending on the spawning and the lifetime of its
stages. A dynamic pipeline is similar to an ordinary pipeline, except that the
number of stages that it contains is not fixed but dynamically generated at
runtime. In fact, it is self-adaptive to the characteristics of a specific query.

Algorithms under this paradigm must specify four kind of stages: input, out-
put, generator and filter stages as well as the number and the type of the I/O
unidirectional channels. The input and output stages are the interface of the
pipeline, managing the input and output data respectively. Input data is fed
to the input stage and the output stage will produce results. The generator is
responsible to create the (parameterised) filter stages.

We now describe two algorithms to solve range queries based on the dynamic
pipeline model: a näıve algorithm equivalent to a linear scan of the whole dataset
followed by the algorithm that we propose, based on a preprocessing of the
dataset by means of data structures such as kd trees, quad trees or R trees. We
will describe both algorithms for a single range query since the same process is
applicable to a sequence of queries iterating on the process for a single one.

Näıve Algorithm. We start by describing a näıve algorithm equivalent to a
concurrent approach of the complete scan of the data set.

To answer Q using the pipeline approach it is necessary to have a recursive
process that constructs a sequence of filters (processes). Every filter stands for
one of the s unidimensional ranges of Q, let us say j (1 ≤ j ≤ s), and it discards

119

from further consideration all the points of the data set that are outside range
(ij , lj , uj), that is, all those points with ij-th coordinate smaller than lj or greater
than uj . Since the query has s ranges, the pipe will end up with s processes acting
concurrently.

This näıve algorithm starts by setting an initial pipeline consisting of 3 stages
–the input, the generator and the output stages, in this sequential order– and
two channels –the first carry the sequence of triplets of Q and the second the
sequence of points in F .

The process starts by feeding (in sequential order) the input stage with the
triplets of Q carried by the first channel. The configuration of the pipe evolves
(stretches) as follows. The input stage passes the data from the first channel (a
triplet of the query at a time) to its successor neighbour. At the very beginning
the triplet (i1, l1, u1) is passed from the input stage to the generator stage.
Every time a triplet arrives to the generator a filter stage, standing for this
triplet, is created as the stage immediately previous to the generator stage. So,
at the very beginning, a filter f1 for the first range of Q is created. The pipeline
consists now of four stages: input, f1, generator and output, in this order. When
triplet (ij , lij , uij) passes through the input stage, it passes also through f1, since
ij 6= i1, it passes through f2, . . . , fj , up to arrive to the generator where filter
fj+1 is created. The process continues until the elements carried by the first
channel are all treated and the channel is empty. The pipe now, regarding the
initial pipe, has s additional stages, one per each triplet of the query.

The next step is to treat the data carried by the second channel, the points.
Every point of the data set passes through the pipe. At every filter fi, as we
already mentioned, if the i-th coordinate of the point is outside the range stored
at fi the point is discarded, otherwise it is passed to next stage. Therefore, all
the points that arrive to the output stage should be reported as part of Q.

This näıve algorithm will force to read and check every point in the orig-
inal set, having therefore complexity proportional to n, independently of the
configuration of Q.

Proposed Algorithm. To improve the efficiency of the näıve algorithm we
propose a preprocessing of the dataset by means of a hierarchical multidimen-
sional data structure. The data structure can be any of the classical ones [2,
4] (such as kd trees, quad trees, R trees, etc.) with the unique requirement
that it divides the domain D of the points into a partition of m k-dimensional
hyperrectagles that are called bounding boxes, where m ≥ 1 is the number of
elements in the partition and depends on the kind of tree used and the num-
ber of levels of that tree. Each bounding box BB is defined by a sequence of
k ranges, this is, BB = (1, l1, u1), . . . , (k, lk, uk). In our preliminar experiments
we use quad tries [2, 4] to preprocess the data points and to end up with a
sequence S = BB1, . . . , BBm of bounding boxes. It is worth noting that the
dynamic pipeline algorithm works identically with any other multidimensional
data structure that fits the previous requirement.

Now, instead of directly filtering points, the pipe will filter, first, the sequence
S of bounding boxes produced by the data structure (it will have then 3 channels

120

instead of two, as before). The bounding boxes will pass through the pipe by
their specification and not by the points that they contain. Every filter stage,
checking for the i-th range of the query, will discard from further consideration
all the bounding boxes whose i-th range does not intersect the i-th range of the
query and will pass the intersecting bounding boxes to next stage. Additionally,
the filtering of bounding boxes divides them into two groups: BBC (the group
of bounding boxes which are completely contained into Q) and BBP (the group
of bounding boxes that intersect Q but are not contained in it).

The algorithm will output all points that are inside of BBC bounding boxes
(since they are all in Q) and it will look and filter all the points in BBP bounding
boxes to decide whether they are in Q.

The total number of treated points corresponds to the number of points con-
tained in the BBC and BBP bounding boxes, which can be considerably less than
the total number of points in F (but this highly depends on the configuration of
the queries, data points, and chosen data structure). Additionally, the algorithm
incurs in the cost of checking the m bounding boxes of S. Our proposal is to
maintain this cost negligible compared to the number of points that have to be
checked by choosing correctly the number of levels of the tree data structure
during the preprocessing of the data.

3 Ongoing Work

We have implemented quad tries in the C++ programming language produc-
ing with this program the sequence of m files that containing the points inside
the corresponding bounding box in sequence S. Besides, we have implemented
the pipeline in the Go programming language (because of its mechanisms of
go-routines and channels). Our preliminar experiments show that our proposed
algorithm beats the näıve one treating systematically half the points of the data
set for queries containing up to a 25% of the points of F . We plan to conduct
further experiments according to the following guidelines: (a) Considering huge
datasets and allocating their corresponding (tree-like) hierarchical representa-
tions in the RAM, we envision that the performance of our algorithm overcomes
the results presented in [5] under similar conditions and thus, it overcomes the
complexity of linear scanning. We will study, then, the incidence of stressing the
population of the memory in order to find insights regarding the percentage of
memory that can be used for storage purposes without affecting the performance
of the schedule and the memory management of the Go system; (b) Under the
premise that the set of points is uniformly distributed, we plan to measure the
incidence of the chosen level of the data structure (and thus of the number m
of bounding boxes to be filtered) on the performance of our algorithm; (c) The
dimensionality of the data increases the parallelism of our algorithm –which
depends on the query– so we are interested in studying how, eventually, our al-
gorithm is more suitable than other proposals in high dimensional settings; (d)
Finally, in order to study the scalability and real applicability of our model, we
plan to conduct our experiments with big real datasets and benchmarks.

121

References

1. J. Aráoz and C. Zoltan. Parallel triangles counting using pipelining. CoRR,
abs/1510.03354, 2015.

2. V. Gaede and O. Günther. Multidimensional access methods. ACM Computing
Surveys, 30(2):170–231, 1998.

3. E. Pasarella, M-E. Vidal, and C. Zoltan. Comparing mapreduce and pipeline im-
plementations for counting triangles. Electronic proceedings in theoretical computer
science, 237:20–33, 2017.

4. H. Samet. Foundations of Multidimensional and Metric Data Structures.
5. S. Sprenger, P. Schäfer, and U. Leser. Multidimensional range queries on modern

hardware. In Proceedings of the 30th International Conference on Scientific and
Statistical Database Management, SSDBM 2018, Bozen-Bolzano, Italy, July 09-11,
2018, pages 4:1–4:12, 2018.

122

This Event is co-financed by Consejo Nacional de Ciencia y Tecnología -
CONACYT with FEEI resources.

Este Evento es cofinanciado por el Consejo Nacional de Ciencia y Tecnología -
CONACYT con recursos del FEEI.

